
COMP313-08A Programming Languages
First Haskell coursework

The first few questions of this coursework are intended to get you started using the hugs interpreter
with some simple definitions. There are some larger problems later on in the coursework. I strongly
suggest that you read through my “background” notes on Haskell, accessible from the course web
site as http://www.cs.waikato.ac.nz/~stever/Haskell_notes.pdf, since some
of the questions refer to ideas in those notes which we may not yet have covered in the lectures.

1 What is the type of (2 *)?
2 What value (remember that functions are values) does (2 *) have?

3. Create a file called ex1 and type in the following definitions:

twice f x = f (f x)
square n = n * n
naturals = [0..]
ones = 1 : ones

and then load this file using the load command. Once the file is loaded, try to answer the following
questions:

a. What is the type of twice?
b. What is the value of twice not True?
c. what is the type of square?
d. what is the type of twice square?
e. what is the value of twice square 4?
f. what is the type of the pre-defined function head?
g. what is the type of head naturals?
h. what is the value of head naturals?
i. draw a picture (using boxes for elements and arrows to show ordering) of the list

naturals.
j. do the same for the list ones.

4. What expression, using only the function square and the number 2, has the value 16?

5. What expression, using only the list naturals, the function (2 *) and the function map,
represents the list of all even natural numbers?

6. Define a function

capitalize :: Char -> Char

which given any alphabetic character returns its capital form. On numbers and punctuation it should
leave the character alone.

You will find the definitions

ord :: Char -> Int

ord = fromEnum

chr :: Int -> Char
chr = toEnum

useful. So,

capitalize ’a’ = ’A’
capitalize ’e’ = ’E’
capitalize ’D’ = ’D’
capitalize ’{’ = ’{’
capitalize ’3’ = ’3’

7. Using only the pre-defined function map and the function capitalize you gave in question
eight, define a function

capitalize_string :: String -> String

which takes a string and applies capitalize to each element. So,

capitalize_string “Hello, Steve” = “HELLO, STEVE”
capitalize_string “Happy Birthday on the 31st” =

“HAPPY BIRTHDAY ON THE 31ST”

8. Using only foldr, the Boolean operation (||)and False, define a function

or_list :: [Bool] -> Bool

so that

or_list [b1, b2,...,bn] = b1 || b2 ||...|| bn

Note that

or_list [] = False

9.
i. Define, using only a list comprehension, the list [1..k] for some k, the string “sheep\n“and
the pre-defined function concat, a function

flock :: Int -> String

which, when given a number, say five, as argument, is such that

putStr (flock 5)

gives

sheep
sheep
sheep

sheep
sheep

i.e. five sheep, one on each line, as value.

ii. Now define

flock2 :: Int -> String

which does the same thing but WITHOUT using a list comprehension, but using anything else you
like.

iii. Using only a list comprehension, the string “sheep “, lists of natural numbers and the pre-

defined function concat, define the function a_row_of_sheep :: Int -> String

so that a_row_of_sheep 5, for example, has value

sheep sheep sheep sheep sheep

iv. By considering your answers to i and iii and generalizing, define a function

big_flock :: Int -> String

so that putStr (big_flock 5), for example, has value

sheep
sheep sheep
sheep sheep sheep
sheep sheep sheep sheep
sheep sheep sheep sheep sheep

10.
For this question do all of Exercise 2.5 on page 33 of the textbook.

Your answers for all the questions above are due at 1000 on Wednesday 26th March 2008.

You must submit your answers as a plain text file via Moodle. This MUST be a plain text file (not
a PDF, not a MS-format file or any other sort of particular format) since we will want to load your
solutions and try them out in hugs.

