
COMP313-08A Programming Languages 
Second Haskell coursework 

 
Solutions 

 
1. Write a function 
 
halve :: [a] -> ([a],[a]) 
 
that splits an even-lengthed list it two equal-lengthed halves, so: 
 
halve [1,2,3,4,5,6] = ([1,2,3],[4,5,6]) 
 
Using the Prelude-defined functions 
 
take :: [a] -> Integer -> [a] 
 
and 
 
drop :: [a] -> Integer -> [a] 
 
we have 
 
halve xs = (take k xs, drop k xs) 
            where k = length xs `div` 2 
 
 
 
2. Define a function 
 
mix :: [Int] -> [Int] -> [Int] 
 
which mixes two sorted lists of integers together, to get a sorted list which contains all the elements 
from the two original lists, so: 
 
mix [3,6,9] [1,8,10] = [1,3,6,8,9,10] 
 
The definition should use explicit recursion and no other pre-defined sorting functions. 
 
mix [] ys = ys 
mix xs [] = xs 
mix (x:xs) (y:ys) 
   |  x <= y = x : mix xs (y:ys) 
   |  x >= y = y : mix (x:xs) ys 
 
 
 
 



3. Use the function mix from question two to define a function 
 
sortints :: [Int] -> [Int] 
 
which sorts a list of integers. The empty list and a singleton list are already sorted, and any other 
list should be sorted by mixing together the two lists that result from sorting the two halves of the 
list separately. 
 
As the question says, the strategy here is to mix together the two, already sorted, halves of the 
original list. So, we halve the original list, sort it and then mix: 
 
 
sortints [] = [] 
sortints [x] = [x] 
sortints xs = mix (sortints xs1) (sortints xs2) 
              where (xs1, xs2) = halve xs 
 
Note that, in fact, the halving as defined in question one above in fact works on odd- or even-
lengthed lists, so this definition is OK. 
 
5. Do exercise 7.5 from the text book. 
 
To answer this we just need to add an environment which records the bindings of variables to 
values, make sure this is carried around by the evaluation function, and give ways of adding to 
and looking-up (finding) in it.  

data Expr = C Float | Expr :+ Expr | Expr :-Expr| Expr :* Expr |      
            Expr :/ Expr | V String| Let String Expr Expr 
 
evaluate :: Expr -> Float 
evaluate exp = evaluate' exp [] ---set-up an   empty environment 
 
evaluate' (C x)         env = x 
 
evaluate' (e1 :+ e2)    env = evaluate' e1 env + evaluate' e2 env 
 
evaluate' (e1 :- e2)    env = evaluate' e1 env - evaluate' e2 env 
 
evaluate' (e1 :* e2)    env = evaluate' e1 env * evaluate' e2 env 
 
evaluate' (e1 :/ e2)    env = evaluate' e1 env / evaluate' e2 env 
 
evaluate' (V v)         env = find v env 
 
evaluate' (Let v e1 e2) env = evaluate' e2 (extend v e1 env) 
 
find v  []          = error ("Unbound variable: " ++ v) 
 
find v1 ((v2,e):es) = if v1 == v2 then e else find v1 es 
 
---We extend with variables that may already appear in 
---the environment so as to have a sensible block 
---structure, so, for example, 
---evaluate (Let “x” (C 5) (Let “x” (C 4) (V “x”)) 



---gives 4.0 and not 5.0 
 
extend v e env = (v, evaluate' e env) : env 

 
6. Do exercise 8.1 from the text book. 

We get a never-ending list of unit-radius circles by taking the list manyCircles and forming a 
single region out of them:  

foldr Union Empty manyCircles 
 
and then intersect this with a five-circles-long rectangle (i.e. it will be 10 units long—five 
two-unit-diameter circles, and two units high) which is first translated so its centre is at the 
centre of the third circle, i.e. four units to the right):  

Translate (4,0) (Shape (Rectangle 10 2)) 
 
which gives us the final region given by the function:  

fiveUnitCircles = (foldr Union Empty manyCircles) `Intersect` 

                       (Translate (4,0) (Shape (Rectangle 10 2))) 

The main problem with this solution is that, once we decide to display it, and because the low-
level graphics functions are, of course, not lazy (physical systems tend not to be), the very long 
list of circles never gets completely represented on the pixel grid that the low-level graphics 
compiles, and so we never get around to doing the intersection, i.e. nothing gets displayed, 
though a lot of computation takes place. However, as an expression this is conceptually 
simpler—we don’t have to say how many circles should be displayed, just that the rectangle 
obscures all but five of them.  

7. Do exercise 8.3 from the text book. 
 
We can do this by taking the complement of a circle whose radius is given by the first 
argument (this gives us all of the plane with a “hole” in it given by the smaller circle) and then 
intersecting this with a circle whose radius is the second argument (so all of the plane beyond 
the larger circle drops away) leaving just the required ring:  

annulus :: Radius -> Radius -> Region 
 
annulus innner outer =  
                      (Complement (Ellipse inner inner)) 

`intersect` (Ellipse outer outer) 
 

8, Do exercise 9.2 from the text book. 
 
We have, by definition, 

flip f x y = f y x  

so, for arbitrary x and y,  

flip (flip f) x y  
-> flip f y x 



-> f x y 

So  

flip (flip f) = f 

 
9. Do exercise 9.9 from the text book. 
 
To find the principal type of fix we reason as follows: Assume f has type a and fix 
has type b. From the LHS, b must be a -> c for some c since fix is clearly a 
function that takes something like f of type a. 
 
From the RHS, a must be c -> c, since f is clearly a function which takes things like 
(fix f) which has type c to things like (fix f)(i.e. the LHS) which has type c. 
Putting all this together we have 
 
b = a -> c 
 
a = c -> c which means 
 
b= (c -> c) ->c 
 
and remember b 
 
was the type of fix, so 
 
fix :: (c -> c) -> c 

 
First abstract on the arguments, to get: 
 
remainder = \a -> \b -> if a<b then a else remainder (a-b) b  
 
then define a new function, which I’ll call absrem, by:  
 
absrem = \r -> \a -> \b -> if a<b then a else r (a-b) b  

Note that this definition is not recursive. 

Also note that  

absrem remainder 
->  
(\r -> \a -> \b -> if a<b then a else r (a-b) b) remainder 
->  
\a -> \b -> if a<b then a else remainder (a-b) b 
->  
remainder 
i.e. 



remainder = absrem remainder              (1) 
 
Now consider the equation defining fix: 
 
fix f = f (fix f) 
 
and the evaluation sequence  

fix absrem  

-> (unfolding fix)  

absrem (fix absrem)  

Clearly, if we make the (non-recursive) definition: 

remainder = fix absrem                    (2) 

then we get 

remainder 

-> 

fix absrem 

-> 

absrem (fix absrem) 

-> 

absrem remainder 

as required by (1). So, (2) is the required non-recursive definition for remainder.  

This process can be used to make any recursive definition into a non-recursive one, except for 
fix. Using fix to remove itself from a recursive definition is clearly not going to work.  

If we step outside of the strong typing (every expression has exactly one principal type) of 
languages like Haskell into a language with no types then we can use this process to make any 
function non-recursive. In such a language (like the λ-calculus) then the expression  

λf. (λx. f (x  x))( λx.f (x  x))  

behaves like fix above, but does not use itself in its own definition. This expression cannot be 
well-formed in a typed language since we have “x x”, i.e. x being applied to itself, and no typed 
expression can be given that works in that way (there is always an extra -> needed in the type 
for the left-hand x compared with the right-hand x, so x must be given two types, which means 
the expression cannot be well-typed and so is not well-formed).  

 



10. Do exercise 9.10 from the text book. 
 
 (y+1)/2 
is  
(/2) ((+1) y) 
which is  
(/2).(+1) y 
which is  
(\x -> (x+1)/2) y 
 
So, 
\x -> (x+1)/2 = (/2) . (+1) 
 
So, 
map (\x -> (x+1)/2) xs 
is  
map (/2).(+1) xs 
and this is  
map (\x -> (x+1)/2) = map (/2).(+1) 
 
11. Do exercise 9.11 from the text book. 
 
map f (map g xs) 
->  
(map f . map g) xs 
->  
map (f . g) xs 
 
So, the earlier  
map (/2).(+1) xs  
= map (/2) (map (+1) xs) 
 
 
12. Do exercise 11.1 from the text book. 

Prove putCharList cs = map putChar cs for all finite lists cs. Use induction on cs. 

 
Base case: Prove putCharList [] = map putChar [] 
 
putCharList [] 

-> (unfold putCharList) 

[] 

-> (fold map) 
map putChar [] 

Assume: For arbitrary cs, putCharList cs = map putChar cs 
To prove: For arbitrary c, putCharList (c:cs) = map putChar (c:cs) 
 



putCharList (c:cs) 

-> (unfold putCharList) 
putChar c : putCharList cs 

-> (by assumption)  

putChar c : map putChar cs 

-> (fold map)  

map putChar (c:cs)  

Q.E.D.  
 
Prove listProd xs = fold (*) 1 xs for all finite lists xs. Use induction on xs. 
 
Base case: Prove listProd [] = fold (*) 1  
 
listProd [] 

-> (unfold listProd)1 

-> (fold fold) 

fold (*) 1 [] 

Assume: For arbitrary xs, listProd xs = fold (*) 1 xs 
To prove: For arbitrary x, listProd (x:xs) = fold (*) 1 (x:xs) 
 
listProd (x:xs) 

-> (unfold listProd) 

x * listProd xs 

-> (by assumption)  
x * fold (*) 1 xs  

-> (fold fold)  

fold (*) 1 (x:xs)  

Q.E.D. 
 
 
 
Your answers for all the questions above are due at 1000 on Wednesday 16th April 2008.  
You must submit your answers as a plain text file via Moodle. This MUST be a plain text file (not a 
PDF, not a MS-format file or any other sort of particular format) since we will want to load your 
solutions and try them out in hugs. Please also put your name and number at the top of the file. 
 


