
 Paper Code Number: COMP313A

 TURN OVER

2006 A SEMESTER EXAMINATIONS

DEPARTMENT Computer Science

PAPER TITLE Programming Languages

TIME ALLOWED Three Hours

NUMBER OF QUESTIONS Seven
IN PAPER

NUMBER OF QUESTIONS Seven
TO BE ANSWERED

VALUE OF EACH QUESTION As indicated

GENERAL INSTRUCTIONS Nil

SPECIAL INSTRUCTIONS Nil

CALCULATORS PERMITTED No

 -4- Paper Code Number: COMP313A

TURN OVER

1. Ruby: (a) Summarise in 4-5 sentences what the main differences are between Ruby and a

language like Java or C++.
[7 Marks]

(b) For each of the three following expressions, determine their result:

(1…10).find_all { |x| x>3}

[“a”,”b”,”c”].inject { |x,y| x+y }

[1,2,3,4,5,6,7].find { |x| x*x > 20 }

[6 marks]

(c) Define a Ruby function allTriplets(), that computes all solutions for following
problem and returns all solutions in an array: X, Y, and Z are all digits from 0 to 9
(inclusive), X, Y, and Z are different from each other, and the following integer
equation holds: (10*X + Y) / (10*Y + Z) = X / Z.

[7 Marks]

2. GC algorithms: Select four of the GC algorithms listed below and a) briefly describe how

they work, as well as b) discuss advantages and disadvantages of each of the four
algorithms you have selected:

reference counting
mark-and-sweep
mark-and-compact
copying GC
generational GC

[20 Marks]

3. Java: (a) The following code example exercises overloaded methods. What output

does this program produce?
[8 Marks]

 3 Paper Code Number: COMP313A

(Question 4 continued next page)

class A {
 public void f(Object o) { System.out.println(“object”); }
 public void f(A a) { System.out.println(“an a”);}
}
class B extends A {
 public void f(B b) { System.out.println(“a b”); }
}
class Test {
 public static void main(String[] args) {
 Object o = new A();
 A a = (A) o;
 Object o1 = new B();
 B b = (B) o1;
 a.f(a);
 a.f(b);
 a.f(o);
 a.f(o1);
 b.f(a);
 b.f(b);
 b.f(o);
 b.f(o1);
 }
}

(b) List and explain four constraints a user-defined equals-method must obey.
Additionally, if a class implements its own specialised equals-method, does it also
have to supply an appropriate a) a specialised hashCode-method and/or b) a
specialised compareTo-method?

[12 Marks]

4.
(a) Say what types, in Haskell, the following expressions have:

(i) (+)
(ii) (1+)
(iii) (1+2)
(iv) map (1+) [1,2,3]
(v) map (1+)
(vi) map (\x -> (‘a’,x)) [1,2,3]

 [6 marks]

(b) Say what values, in Haskell, the following expressions have:

(i) map (1+) [1,2,3]
(ii) map (\x -> (‘a’,x)) [1,2,3]
(iii) f (Rectangle 6.0 7.0) 1.0 2.0
 where f s dx dy =
 case s of
 RtTriangle s1 s2 = RtTriangle s1*dx s2*dy
 Rectangle s1 s2 = Rectangle s1*dx s2*dy
 Ellipse r1 r2 = Ellipse r1*dx r2*dy
 given the data declaration

 -4- Paper Code Number: COMP313A

TURN OVER

data Shape = Rectangle Float Float

 | Ellipse Float Float
 | RtTriangle Float Float

[4 marks]

5. In Haskell, the type constructor Tree defined by

 data Tree a = Leaf a
 | Node a (Tree a) (Tree a)

can be used to represent binary trees with data at internal nodes and leaves.

(a) Define a function

sumLeaves :: Tree Integer -> Integer

which adds-up the data values just at the leaves
[4 marks]

(b) Define a function

sumNodes :: Tree Integer -> Integer

which adds-up the data values just at the internal (non-leaf) nodes
[4 marks]

(c) Define a function

sumTree :: Tree Integer -> Integer

which adds-up the data values at all nodes in a tree, and do not use recursion in your
definition.

[4 marks]

6. Given the Haskell definition

 x = x + 1

 (a) Show three steps in the evaluation of the expression

 x

 [1 mark]
 (b) What value does x have?

[1 mark]
 (c) If a function f is strict, what value does

 f ⊥

 have?

[1 mark]

 3 Paper Code Number: COMP313A

(Question 4 continued next page)

7. For Haskell,
 (a) Prove that, for any list xs,

 xs ++ [] = [] ++ xs

[4 marks]
(b) Prove that, for any lists xs and ys,

 length (xs ++ ys) = length xs + length ys

[4 marks]
(c) Prove that

 sumList . map (2*) = (2*) . sumList

 where

sumList :: [Integer] -> Integer
sumList [] = 0
sumList (x:xs) = x + sumList xs

[7 marks]

Definitions of Haskell prelude-defined functions needed in the paper:

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

length :: [a] -> Integer
length [] = 0
Length (x:xs) = 1 + length xs

