2006 A SEMESTER EXAMINATIONS		π
DEPARTMENT	Computer Science	$f^{i c}$
PAPER TITLE	Programming Languages	
TIME ALLOWED	Three Hours	
NUMBER OF QUESTIONS IN PAPER	Seven	
NUMBER OF QUESTIONS TO BE ANSWERED	Seven	
VALUE OF EACH QUESTION	As indicated	
GENERAL INSTRUCTIONS	Nil	
SPECIAL INSTRUCTIONS	Nil	
CALCULATORS PERMITTED	No	

1. Ruby: (a) Summarise in $4-5$ sentences what the main differences are between Ruby and a language like Java or C++.
[7 Marks]
(b) For each of the three following expressions, determine their result:

$$
\begin{aligned}
& \text { (1...10).find_all }\{|x| x>3\} \\
& {[" \mathrm{a} ", ’ b ", " c "] \text {.inject }\{|x, y| x+y\}} \\
& {[1,2,3,4,5,6,7] . f i n d ~\{|x| x * x>20\}}
\end{aligned}
$$

(c) Define a Ruby function allTriplets(), that computes all solutions for following problem and returns all solutions in an array: X, Y, and Z are all digits from 0 to 9 (inclusive), X, Y, and Z are different from each other, and the following integer equation holds: $\left(10^{*} \mathrm{X}+\mathrm{Y}\right) /\left(10^{*} \mathrm{Y}+\mathrm{Z}\right)=\mathrm{X} / \mathrm{Z}$.
[7 Marks]
2. GC algorithms: Select four of the GC algorithms listed below and a) briefly describe how they work, as well as b) discuss advantages and disadvantages of each of the four algorithms you have selected:
reference counting
mark-and-sweep
mark-and-compact
copying GC
generational GC
[20 Marks]
3. Java: (a) The following code example exercises overloaded methods. What output does this program produce?
[8 Marks]

TURN OVER

```
class A {
    public void f(Object o) { System.out.println("object"); }
    public void f(A a) { System.out.println("an a");}
}
class B extends A {
    public void f(B b) { System.out.println("a b"); }
}
class Test {
    public static void main(String[] args) {
        Object o = new A();
        A a = (A) o;
        Object o1 = new B();
        B b = (B) o1;
        a.f(a);
        a.f(b);
        a.f(o);
        a.f(o1);
        b.f(a);
        b.f(b);
        b.f(o);
        b.f(o1);
    }
}
```

(b) List and explain four constraints a user-defined equals-method must obey. Additionally, if a class implements its own specialised equals-method, does it also have to supply an appropriate a) a specialised hashCode-method and/or b) a specialised compareTo-method?
[12 Marks]
4.
(a) Say what types, in Haskell, the following expressions have:
(i) $(+)$
(ii) $(1+)$
(iii) $(1+2)$
(iv) map (1+) [1,2,3]
(v) map (1+)
(vi) map (\x -> (‘a',x)) [1,2,3]
(b) Say what values, in Haskell, the following expressions have:
(i) map (1+) $[1,2,3]$
(ii) map ($\backslash \mathrm{x}->\left({ }^{\prime} \mathrm{a}, \mathrm{x}\right)$) $[1,2,3]$
(iii) f (Rectangle 6.07 .0) $1.0 \quad 2.0$
where f s dx dy =
case s of RtTriangle s1 s2 = RtTriangle s1*dx s2*dy Rectangle s1 s2 = Rectangle s1*dx s2*dy Ellipse r1 r2 = Ellipse r1*dx r2*dy
given the data declaration

```
data Shape = Rectangle Float Float
    Ellipse Float Float
    RtTriangle Float Float
```

5. In Haskell, the type constructor Tree defined by
data Tree $a=$ Leaf a
| Node a (Tree a) (Tree a)
can be used to represent binary trees with data at internal nodes and leaves.
(a) Define a function
```
sumLeaves :: Tree Integer -> Integer
```

which adds-up the data values just at the leaves
(b) Define a function

```
sumNodes :: Tree Integer -> Integer
```

which adds-up the data values just at the internal (non-leaf) nodes
(c) Define a function

```
sumTree :: Tree Integer -> Integer
```

which adds-up the data values at all nodes in a tree, and do not use recursion in your definition.
6. Given the Haskell definition

$$
x=x+1
$$

(a) Show three steps in the evaluation of the expression

X
(b) What value does x have?
(c) If a function f is strict, what value does
f \perp
have?
7. For Haskell,
(a) Prove that, for any list xs,

```
xs ++ [] = [] ++ xs
```

(b) Prove that, for any lists $x s$ and $y s$,

```
length (xs ++ ys) = length xs + length ys
```

(c) Prove that

```
sumList . map (2*) = (2*) . sumList
```

where

```
sumList :: [Integer] -> Integer
sumList [] = 0
sumList (x:xs) = x + sumList xs
```

Definitions of Haskell prelude-defined functions needed in the paper:

```
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs)=f x : map f xs
(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)
length :: [a] -> Integer
length [ ] = 0
Length (x:xs) = 1 + length xs
```

