
Paper Code: COMP 313-07A (HAM)

2007 A SEMESTER EXAMINATIONS

DEPARTMENT Department of Computer Science

PAPER TITLE Programming Languages

TIME ALLOWED Three Hours

NUMBER OF QUESTIONS

IN PAPER

Six

NUMBER OF QUESTIONS

TO BE ANSWERED

Six

VALUE OF EACH QUESTION The value of each question is indicated. The
total number of marks achievable is 100.

GENERAL INSTRUCTIONS Answer ALL SIX questions.

SPECIAL INSTRUCTIONS None

CALCULATORS PERMITTED No

TURN OVER

2 Paper Code: COMP 313-07A (HAM)

The Appendix at the end of this paper contains some definitions that you might find
useful when answering questions 1 to 3.

CONTINUED

3 Paper Code: COMP 313-07A (HAM)

Question 1

a) Say what types, in Haskell, the following expressions have:

(i) (+)

(ii) (1+)

(iii) (1 + 2)

(iv) map (1+) [1, 2, 3]

(v) map (1+)

(vi) map (\ x−> (′a ′, x))[1, 2, 3]

(6 marks)

b) Say what values, in Haskell, the following expressions have:

(i) map (1+) [1, 2, 3]

(ii) (map (\ x− > (′a ′, x)) [1, 2, 3]

(iii) f (Rectangle 6.0 7.0) 1.0 2.0

where f s dx dy = case s of
RtTriangle s1 s2 = RtTriangle s1 ∗ dx s2 ∗ dy
Rectangle s1 s2 = Rectangle s1 ∗ dx s2 ∗ dy
Ellipse r1 r2 = Ellipse r1 ∗ dx r2 ∗ dy

given the data declaration

data Shape = Rectangle Float Float |
Ellipse Float Float |
RtTriangle Float Float

(4 marks)

Answer:

a) (i) Integer −> Integer −> Integer
A better answer is Num a => a−> a−> a but most won’t give that
as we did not cover type classes.

(ii) Integer −> Integer

(iii) Integer

(iv) [Integer]

(v) [Integer] −> [Integer]

(vi) [(Char , Integer)]

b) (i) [2, 3, 4]

(ii) [(′a ′, 1), (′a ′, 2), (′a ′, 3)]

(iii) Rectangle 6.0 14.0

TURN OVER

4 Paper Code: COMP 313-07A (HAM)

Question 2

In Haskell, the type constructor Tree defined by

data Tree a = Leaf a | Node a (Tree a) (Tree a)

can be used to represent binary trees with data at internal nodes and leaves.

a) Define a function

sumLeaves :: Tree Integer −> Integer

which adds-up the data values just at the leaves

(3 marks)

b) Define a function

sumNodes :: Tree Integer −> Integer

which adds-up the data values just at the internal (non-leaf) nodes

(3 marks)

c) Define a function

sumTree :: Tree Integer −> Integer

which adds-up the data values at all nodes in a tree. Do not use recursion in your
definition.

(4 marks)

Answer:

a) sumLeaves (Leaf n) = n
sumLeaves (Node n t1 t2) = sumLeaves t1 + sumLeaves t2

b) sumNodes (Leaf n) = 0
sumNodes (Node n t1 t2) = n + sumNodes t1 + sumNodes t2

c) sumTree t = sumLeaves t + sumNodes t

CONTINUED

5 Paper Code: COMP 313-07A (HAM)

Question 3

a) Prove that, for any finite list xs ,

xs + + [] = [] + + xs

(5 marks)

b) Prove that, for any finite lists xs and ys ,

length (xs + + ys) = length xs + length ys

(5 marks)

c) Prove for finite lists that

sumList . map (2 ∗) = (2 ∗) . sumList

where

sumList :: [Integer] −> Integer
sumList [] = 0
sumList (x : xs) = x + sumList xs

(10 marks)

Answer:

a) Base case:

[] ++ [] = [] ++ [] (equality is reflexive)

Assume that for any list xs, xs ++ [] = [] ++ xs.

To prove: for any list xs and any x, (x:xs) ++ [] = [] ++ (x:xs)

(x : xs) + +[] ((by definition of ++, second equation, left to right))

= x : (xs + +[]) ((by assumption))

= x : ([] + +xs) ((by definition of ++, first equation, left to right))

= x : xs ((by definition of ++, first equation, right to left))

= [] + +(x : xs)

as required.

b) Base case: for any list ys,

length ([] ++ ys) = length [] + length ys

length([] + +ys) ((definition of ++, first equation, left to right))

= length ys ((arithmetic))

= 0 + length ys ((definition of length, first equation, right to left))

= length[] + length ys

as required.

TURN OVER

6 Paper Code: COMP 313-07A (HAM)

Assume for any lists xs and ys, length (xs ++ ys) = length xs + length ys

To prove: for any value x and any lists xs and ys,

length ((x:xs) ++ ys) = length (x : xs) + length ys

length((x : xs) + +ys) ((definition of ++, second equation, l to r))

= length(x : (xs + +ys)) ((definition of length, sec. equation, l to r))

= 1 + length(xs + +ys) ((by assumption))

= 1 + length xs + length ys ((definition of length, sec. eqn., r to l))

= length(x : xs) + length ys

as required.

c) From the type of the expressions we see that we have to show, for any list
xs, sumList . map (2*) xs = (2*) . sumList xs

Base case:

sumList . map (2*) [] = (2*) . sumList []

sumList .map(2∗)[] ((definition of .))

= sumList(map(2+)[]) ((definition of map, first equation, l to r))

= sumList [] ((definition of sumList, first equation, left to right))

= 0 ((arithmetic))

= (2∗)0 ((definition of sumList, first equation, right to left))

= (2∗)(sumList []) ((definition of .))

= (2∗).sumList []

as required.

Assume that for all xs, sumList . map (2*) xs = (2*) . sumList xs

To prove: for any value x and all lists xs, sumList . map (2*) (x:xs) =
(2*) . sumList (x:xs)

sumList .map(2∗)(x : xs) ((definition of .))

= sumList(map(2∗)(x : xs)) ((definition of map, sec. eqn, l to r)

= sumList((2∗)x : map(2∗)xs)) ((def. of sumList, sec. eqn., l to r))

= (2∗)x + sumList(map(2∗)xs) ((definition of .))

= (2∗)x + sumList .map(2∗)xs ((assumption))

= (2∗)x + (2∗).sumListxs ((definition of .))

= (2∗)x + (2∗)sumListxs ((arithmetic))

= (2∗)(x + sumListxs) ((definition of sumList, sec. eqn., r to l))

= (2∗)sumList(x : xs) ((definition of .))

= (2∗).sumList(x : xs)

as required.

CONTINUED

7 Paper Code: COMP 313-07A (HAM)

Question 4

a) In the Appendix is the code, using the Parser module you used for your coursework,
for parsing the expression part (given by the non-terminal exp) from the following
grammar for the programming language TINY (also used in your coursework):

cmd ::= comp ; cmd | comp
comp ::= ide := exp | output exp |

if exp then cmd else cmd fi |
while exp do cmd | (cmd)

exp ::= term + exp | term = exp | term
term ::= not exp
factor ::= read | false | true | 0 | 1 | ide | (exp)
ide ::= a string of characters

Write compatible Haskell code to complete the parser for TINY, i.e. write the code
to deal with the non-terminals cmd and comp.

The type of commands that should be the target for the parser is given by

data Cmd = Assign Ide Exp | Output Exp |
IfThenElse Exp Cmd Cmd |
WhileDo Exp Cmd | Seq Cmd Cmd
deriving Show

data Exp = Plus Exp Exp | Equal Exp Exp |
Not Exp | Read | FF | TT | Zero | One | I Ide
deriving Show

type Ide = String
(10 marks)

TURN OVER

8 Paper Code: COMP 313-07A (HAM)

Answer:

cmd :: Parser Cmd
cmd = do c1 <− comp

do symbol ′′; ′′

c2 < −cmd
return (Seq c1 c2)

+ + +
comp

comp :: Parser Cmd
comp = do i <− identifier

do symbol ′′ :=′′

e < −expr
return (Assign i e)

+ + +
do symbol ′′output ′′

e < −expr
return(Output e)

+ + +
do symbol ′′if ′′

e < −expr
do symbol ′′then ′′

c1 <− cmd
do symbol ′′else ′′

c2 <− cmd
return (IfThenElse e c1 c2)

+ + +
do symbol ′′while ′′

e <− expr
do symbol ′′do ′′

c <− cmd
return (WhileDo e c)

+ + +
do symbol ′′(′′

c <− cmd
symbol ′′)′′

return c

b) Add productions for declarations of variables, procedures (a named command) and
functions (a named expression) to the grammar. Use the non-terminal symbol decl
to stand for these declarations.

Examples of declarations that your grammar extension should allow for are:

var x = 2
var sum = x + 4
var x = 2; var sum = 4
proc f (x); (var y = 0; output (x + y))
fun decr(n); n − 1

CONTINUED

9 Paper Code: COMP 313-07A (HAM)

where x , sum, f , y , decr and n are all examples of identifiers.

(10 marks)

Answer:

decl ::= decls ; decl | decls
decls ::= var ide = exp | proc ide (ide); cmd | fun ide (ide); exp

Note: as ever, the stratification is important here, so take of some (not
all) marks for not doing it.

c) (i) Write code for a function decl which parses your new declaration productions.

Use the data structure given by:

data Decl = Var Ide Exp | Proc Ide Ide Cmd | Fun Ide Ide Exp

as the target of your new piece of parsing code.

(5 marks)

Answer:

decl :: Parser Decl
decl = do d1 <− decls

symbol ′′; ′′

d2 < −decl
return (Seqd d1 d2)

+ + +
decls

decls :: Parser Decl
decls= do symbol ′′var ′′

i <− identifier
symbol ′′ =′′

e <− expr
return (Var i e)

+ + +
do symbol ′′proc ′′

i1 <− identifier
symbol ′′(′′

i2 <− identifier
symbol ′′)′′

symbol ′′; ′′

c <− cmd
return (Proc i1 i2 c)

+ + +
do symbol ′′fun ′′

i1 <− identifier
symbol ′′(′′

i2 <− identifier
symbol ′′)′′

symbol ′′; ′′

e <− expr
return (Fun i1 i2 e)

TURN OVER

10 Paper Code: COMP 313-07A (HAM)

Note: there is a bit of a sting here—they should have pointed out that
the data type needed an extra clause and then stratification as usual in
the code, all to deal with sequences of declarations.

(ii) In order to include declarations within commands we need to add a new pro-
duction for commands:

cmd ::= begin decl ; cmd end

Show how to extend the code of the parser for commands to add this production
to the parser.

(5 marks)

Answer:

Need to add this alternative to the function comp that parses com-
mands:

+ + +
do symbol ′′begin ′′

d <− decl
symbol ′′; ′′

c <− cmd
symbol ′′end ′′

return (BeginEnd d c)

and also need to add a clause to the data type for commands to intro-
duce the new constructor BeginEnd:

BeginEnd Decl Cmd

CONTINUED

11 Paper Code: COMP 313-07A (HAM)

Question 5

a) Using the semantic clauses for TINY given in the Appendix, evaluate:

(i)

C Joutput 1; output 0K(∅, <>, <>)

(5 marks)

Answer:

First two partial results:
(a)

C Joutput 1K(∅, <>, <>)

= (EJoutput 1K(∅, <>, <>) = (v , (m, i , o))) → (m, i , v .o), error
(C1)

= (1, (∅, <>, <>)) = (v , (m, i , o)) → (m, i , v .o), error (E1)

= (∅, <>, < 1 >) (pattern matching and definition of →)

(b)
C Joutput 0K(∅, <>, < 1 >)

= (EJoutput 0K(∅, <>, < 1 >) = (v , (m, i , o))) → (m, i , v .o), error
(C1)

= (0, (∅, <>, < 1 >)) = (v , (m, i , o)) → (m, i , v .o), error (E1)

= (∅, <>, < 0.1 >) (pattern matching and definition of →)

So, main result:

C Joutput 1; output 0K(∅, <>, <>)

= (C Joutput 1K(∅, <>, <>) = error) →

error ,C Joutput 0K(C Joutput 1K(∅, <>, <>)) (C5)

= C Joutput 0K(∅, <>, < 1 >) (By (a) and (∅, <>, < 1 >) 6= error)

= (∅, <>, < 0.1 >) (By (b))

(ii)

C Joutput(read + read)K(∅, < 1, 2 >, <>)

(5 marks)

Answer:

First two partial results:

TURN OVER

12 Paper Code: COMP 313-07A (HAM)

(a)

EJread + readK(∅, < 1, 2 >, <>)

= (EJreadK(∅, < 1, 2 >, <>) = (v1, s1)) →

((EJreadKs1 = (v2, s2)) →

(isNum v1 and isNum v2 →

(v1 + v2, s2), error), error), error (E7)

= (1, (∅, < 2 >, <>) = (v1, s1)) →

((EJreadKs1 = (v2, s2)) →

(isNum v1 and isNum v2 →

(v1 + v2, s2), error), error), error
(E3 and null < 1, 2 >= false and hd < 1, 2 >= 1 and tl < 1, 2 >=< 2 >)

= ((EJreadK(∅, < 2 >, <>) = (v2, s2)) →

(isNum 1 and isNum v2 →

(1 + v2, s2), error), error)
(Pattern matching and definition of →)

= (2, (∅, <>, <>)) = (v2, s2) →

(isNum 1 and isNum v2 →

(1 + v2, s2), error), error)
(E3 and null < 2 >= false and hd < 2 >= 2 and tl < 2 >=<>)

= isNum 1 and isNum 2 → (1 + 2, (∅, <>, <>)), error
(Pattern matching and definition of →)

= (1 + 2, (∅, <>, <>))
(isNum 1 and isNum 2 = true and definition of rightarrow)

= (3, (∅, <>, <>)) (arithmetic)

Then the main result:

C Joutput(read + read)K(∅, < 1, 2 >, <>)

= (∅, <>, < 3 >) (C1, (a), pattern matching, definition of →)

where ∅ is the function which has empty domain and range, < 1, 2 > is the sequence
consisting of 1 followed by 2 and <> is the empty sequence.

b) Using the semantic clauses for SMALL given in the Appendix (photocopied from
chapter six of Gordon’s book), evaluate:

(i)

PJprogram output 1; output 0 K <>

(5 marks)

Answer:

In these calculations I have put almost every little detail in. I do not
expect the students to have spelt out each step in this much detail, but
each step taken (which might bundle together several of the steps I give
here) should be fairly well-justified.

CONTINUED

13 Paper Code: COMP 313-07A (HAM)

PJprogram output 1; output 0K <>

= C Joutput 1; output 0K() (λ s .stop)(<> /input) (P)

= C Joutput 1K() ; C Joutput 0K() ; (λ s .stop)(<> /input) (C7)

= C Joutput 1K() (C Joutput 0K() (λ s .stop))(<> /input)
(definition of ;)

= RJ1K() λ e s .(e, (C Joutput 0K()(λ s .stop)) s)(<> /input)
(C2)

= EJ1K() ; deref ; Rv? ; λ e s .(e, (C Joutput 0K()(λ s .stop)) s)(<> /input)
(R)

= EJ1K() (deref ; Rv? ; λ e s .(e, (C Joutput 0K()(λ s .stop)) s))(<> /input)
(definition of ;)

= deref ; Rv? ; λ e s .(e, (C Joutput 0K()(λ s .stop)) s)(BJ1K)(<> /input)
(E1)

= deref ; Rv? ; λ e s .(e, (C Joutput 0K()(λ s .stop)) s)(1)(<> /input)
(BJ1K = 1)

= deref (Rv? ; λ e s .(e, (C Joutput 0K()(λ s .stop)) s))(1)(<> /input)
(definition of ;)

= isloc 1 → cont (Rv? ; λ e s .(e, (C Joutput 0K()(λ s .stop)) s))(1)(<> /input),

Rv? ; λ e s .(e, (C Joutput 0K()(λ s .stop)) s)(1)(<> /input)
(definition of deref)

= Rv? ; λ e s .(e, (C Joutput 0K()(λ s .stop)) s)(1)(<> /input)
(definition of isLoc)

= Rv?(λ e s .(e, (C Joutput 0K()(λ s .stop)) s))(1)(<> /input)
(definition of ;)

= (isRv 1 → λ e s .(e, (C Joutput 0K()(λ s .stop)) s))(1), err)(<> /input)
(definition of Rv?)

= λ e s .(e, (C Joutput 0K()(λ s .stop)) s)(1)(<> /input)
(definition of isRv)

= (1, (C Joutput 0K()(λ s .stop)) (<> /input)) (application)

= (1, RJ0K() λ e s .(e, (λ s .stop) s)(<> /input)) (C2)

= (1, EJ0K() ; deref ; Rv? ; λ e s .(e, (λ s .stop) s)(<> /input))
(R)

= (1, EJ0K() (deref ; Rv? ; λ e s .(e, (λ s .stop) s))(<> /input))
(definition of ;)

= (1, deref ; Rv? ; λ e s .(e, (λ s .stop) s)(BJ0K)(<> /input))
(E1)

= (1, deref ; Rv? ; λ e s .(e, (λ s .stop) s)(0)(<> /input))
(BJ0K = 0)

= (1, deref (Rv? ; λ e s .(e, (λ s .stop) s))(0)(<> /input))
(definition of ;)

TURN OVER

14 Paper Code: COMP 313-07A (HAM)

= (1, isloc 0 → cont (Rv? ; λ e s .(e, (λ s .stop) s))(0)(<> /input),

Rv? ; λ e s .(e, (λ s .stop) s)(0)(<> /input))
(definition of deref)

= (1, Rv? ; λ e s .(e, (λ s .stop) s)(0)(<> /input))
(definition of isLoc)

= (1, Rv?(λ e s .(e, (λ s .stop) s))(0)(<> /input)) (definition of ;)

= (1, (isRv 0 → λ e s .(e, (λ s .stop) s)(0), err)(<> /input))
(definition of Rv?)

= (1, λ e s .(e, (λ s .stop) s)(0)(<> /input)) (definition of isRv)

= (1, (0, λ s .stop (<> /input))) (application)

= (1, (0, stop)) (application)

(ii)

PJprogram begin var x = read ; output x endK <>

(5 marks)

Answer:

PJprogram begin var x = read ; output x endK <>

= C Jbegin var x = read ; output x endK() (λ s .stop)(<> /input)
(P)

= DJvar x = readK() λ r ′.C Joutput x K()[r ′] (λ s .stop)(<> /input)
(C6)

= RJreadK(); ref λ ι. λ r ′.C Joutput x K()[r ′](ι/x) (λ s .stop)(<> /input)
(D2)

= RJreadK()(ref λ ι. λ r ′.C Joutput x K()[r ′](ι/x) (λ s .stop))(<> /input)
(definition of ;)

= EJreadK(); deref ; Rv?; (ref λ ι. λ r ′.C Joutput x K()[r ′](ι/x) (λ s .stop))(<> /input)
(R)

= EJreadK() (deref ; Rv?; (ref λ ι. λ r ′.C Joutput x K()[r ′](ι/x) (λ s .stop)))(<> /input
(definition of ;)

= null((<> /input) input) → error , (E3)

= null() → error , (((¡¿/input)) input = ¡¿)

= error (null¡¿ = true)

You must show all your working in detail.

CONTINUED

15 Paper Code: COMP 313-07A (HAM)

Question 6

In TINY we can define a new command donothing , which has no effect on the state, by:

C JdonothingK s = s

Given this new command, show that:

C JC ; donothingK s = C Jdonothing ; C K s = C JC K s

for all commands C and states s .

You must show all your working in detail.

(10 marks)

Answer:

C JC ; donothingK s

= (C JC K s = error) → error ,C JdonothingK (C JC K s) (C5)

= (C JC K s = error) → error ,C JC K s (by definition of donothing)

= C JC K s
(consider the cases where C JC K s = error and C JC K s 6= error)

C Jdonothing ; C K s

= (C JdonothingK s = error) → error ,C JC K (C JdonothingK s) (C5)

= C JC K s (by definition of donothing)

Appendix

Definitions of various Haskell functions

map :: (a −> b) −> [a] −> [b]
map f [] = []
map f (x : xs) = f x : map f xs

(++) :: [a] −> [a] −> [a]
[] + + ys = ys
(x : xs) + + ys = x : (xs + + ys)

length :: [a] −> Integer
length [] = 0
length (x : xs) = 1 + length xs

TURN OVER

16 Paper Code: COMP 313-07A (HAM)

Haskell for parser

Here is the code for the expression parts of the parser for TINY:

exp :: Parser Exp
exp = do e1 <− term

do symbol ′′+′′

e2 <− exp
return(Pluse1e2)

+ + +
do e1 <− term

do symbol ′′ =′′

e2 <− exp
return (Equal e1 e2)

+ + +
term

term :: Parser Exp
term = do symbol ′′not ′′

e <− exp
return (Not e)

+ + +
factor

factor :: Parser Exp
factor= do symbol ′′read ′′

return Read
+ + +
do symbol ′′false ′′

return FF
+ + +
do symbol ′′true ′′

return TT
+ + +
do symbol ′′0′′

return Zero
+ + +
do symbol ′′1′′

return One
+ + +
do i <− identifier

return (I i)
+ + +
do symbol ′′(′′

e <− exp
do symbol ′′)′′

return e

CONTINUED

17 Paper Code: COMP 313-07A (HAM)

Semantic clauses for TINY

First the semantic domains:

State = Memory × Input × Output
Memory = Ide → [Value + {unbound}]
Input = Value∗

Output = Value∗

Value = Num + Bool

where Ide is a domain of identifiers, and Num and Bool are basic values that can be
represented in the language.

Next the clauses for expressions:

E : Exp → [State → [Value + {error}]]

where Exp is the syntactic domain of expressions.

E1

EJ0K s = (0, s)
EJ1K s = (1, s)

E2

EJtrueK s = (true, s)
EJfalseK s = (false, s)

E3

EJreadK (m, i , o) = null i → error , (hd i , (m, tl i , o))

E4

EJI K (m, i , o) = (m I = unbound) → error , (m I , (m, i , o))

E5

EJnot EK s = (EJEK s = (v , s ′)) → (isBool v → (not v , s ′), error), error

E6

EJE1 = E2K s = (EJE1K s = (v1, s1)) →
((EJE2K s1 = (v2, s2)) → (v1 = v2, s2), error), error

E7

EJE1 + E2K s = (EJE1K s = (v1, s1)) →
((EJE2K s1 = (v2, s2)) →

(isNum v1 and isNum v2 →
(v1 + v2, s2), error), error), error

TURN OVER

18 Paper Code: COMP 313-07A (HAM)

Now the clauses for commands:

C : Com → [State → [State + {error}]]

where Com is the syntactic domain of commands.

C1

C Joutput EK s = (EJEK s = (v , (m, i , o))) → (m, i , v .o), error

C2

C JI := EK s = (EJEK s = (v , (m, i , o))) → (m[v/I], i , o), error

C3

C Jif E then C1 else C2K s = (EJEK s = (v , s ′)) →
(isBool v →

(v → C JC1K s ′,C JC2K s ′), error), error

C4

C Jwhile E do C K s = ((EJEK s = (v , s ′)) →
(isBool v → (v →

((C JC K s ′ = s ′′) → C Jwhile E do C K s ′′, error)
, s ′), error), error)

C5

C JC1; C2K s = (C JC1K s = error) → error ,C JC2K (C JC1K s)

Semantic clauses for SMALL

These are attached overleaf.

