COMP313-08A
Programming Languages
Notes on Standard Semantics

Steve Reeves, heavily based on Mike Gordon’s book—thess ané brief,
S0 you need to take further notes at the lectures and reaathie b

May 13, 2008

1 Standard Semantics

For “real” languages we need more heavy-duty apparatughiadnsed for TINY. Standard
semantics is intended for real languages and it brings esitike:

1. states are not directly transformed (by expressions amgrands) but indirectly via
continuations;

2. identifiers are not bound directly to values but via therimtediary idea ofocations
or variables, and using this idea we can handle sharing @awira].

2 Continuations

Read section 5.1 of Gordon for a fuller, more detailed, antou
These model “the rest of the program”.

We make the denotations of constructs depend on the rest pfdigram (theontinuation
of the program)—this is where each construct will pass gsilte

Usually, where no error occurs, it is the code following therent construct that takes
control. This is thenormal continuation. If an error occurs (or a jump...) then control
passes to some other continuation.

A continuation is a function which takes “the answer so fart by being “the rest of the
program”, transforms this into the “final answer”.

For example, in TINYI := E; C'is such that the answer so far after doihg= F (which
is some state) is passed to the rest of the program(i.@nd the final answer is the state
got from doingC' on the intermediate state.

The answer so far after doingj, i.e. what is passed tb := ;C is a value {’s value)
together with a state (the state after doirig

The first kind of continuation, modelling the rest of the piarg after a command, are
command continuations from the domairCont where

Cont = State — [State + {error}]

The second kind of continuation, modelling the rest fo tragpam after an expression, are
expression continuations from the domain&cont where

Econt = Value — State — [State + {error}]

Note that
Econt = Value — Cont

Now the semantic domains for TINY, which were

E : Exp — State — [[Value x State] + {error}]

and
C : Com — State — [State + {error}]

become:

E':: Exp — Econt — State — [State + {error}]
which is

E':: Exp — Econt — Cont

and

C": Com — Cont — State — [State + {error}]
which is

C": Com — Cont — Cont

In general we have:

kv s, whereE has values and transforms to s’
E'E]) ks= (1)
error, otherwise

2

and
cs, whereC transformss to s’

C'[C]cs=
error, oOtherwise

For example
C/[[Cl; Cg]] cCS = C/[[C'l]](C'[[Cg]] C)S

2.1 Thingsto do with output

Three problems regarding output with what we have said so far

(2)

1. Itis not natural to say that the result of running a progmthe whole final state; we

usually think of just the output component as being “the It&su

2. by making output part of the state then we have made thaibjutgt as accessible
to programs as the memory or the input are, but this is notralagither since once

something is output it is no longer accessible to the program

3. we have assumed that output is a finite sequence of value®rta non-terminating

program this is not true.

So, we remove output from the state and change the type ahcaibns. We get:

State = Memory x Input

Memory = Ide — [Value + {unbound}|
Input = Value*

Value = Num + Bool

Cont = State — Ans

Econt = Value — Cont

Ans = {error, stop} + [Value x Ans|

The domainAns of final answers is, note, recursive, So can express thetsesuh non-
terminating program. Also note that a final answer is eithiaconsisting of eithetrror
or stop and a finite sequence of answers, or it is an infinite sequeinaeswers (with no

error Of stop).

This change means that the clause giving the output comntsnteaning now has to be:

Cloutput E] ¢ = E[E] v, s.(v, cs)

SO F is evaluated to get a valueand a new state and the final answer is followed
by whatever the rest of the prograngives starting with state. This means that if the
program crashes after outputting some values then thoses/ake not lost (which they

3

would be using the original way of doing things). To see thigthe commandutput 0
with the “always an error” continuatioks.error on the new and old clauses for output.

If the program is the (probably composite) commanthenC[C](As.stop) s will even-
tually outputstop if the program terminates normally when started in statéf it never
terminates thentop is never output.

The domainAns is language dependent.

3 Environments, locations and stores and scope

Often in a language identifiers are not bound to values budtéubles or locations.
This allowssharing or aliasing.

Sharing happens if we declare a procedure (method) by

procedure P(var x,y : int) < statements >

and then calP(z, z) then inside the body (inside statements >) bothz andy will share
the variable denoted by

So, if sharing can happen we have to model it. First we intteducations and then
stores. A store associates locations with values:

Store = Loc — [Sv + {unused}]

and hereSv is a domain of storable values. These are language dependiat can be
stored in a language is one dimension used to classify layagudt is conventional to use
ss to range over storess to range over locations and to range over storable values.

To model identifiers and their denotations we have the ideaofronment. These asso-
ciate identifiers with locations:

Env = Ide — [Dv + {unbound}]

Again Duv, the denotable values, are language dependent. They fartheardimension
for classifying languages. It is conventional to useto range over environments adsl
to range over denotable values. usudlly = Loc but other things may be denotable
too—constants, arrays, records, procedures etc.

We also use the domain of expressible valBesand use:s to range over this.

Next, scope. Commands change thetents of locations, but not the way identifiers bind

to locations. Consider:
begin integer x;

end
wherex denotes a fixedbcation, and then consider:

begin integer x;

nteger y;

T =1

.begin integer x;
T =2

end

end

The x occurrences in the inner and outer blocks denote differ@edtions. Since is
not declared in the inner block it denotes the same locaticoughout. Thescope of a
declaration is where it holds. The inner block isde in the scope of the outer declaration
of z, but not ofy.

In standard semantics:

e commands change the store but the environment;

e declarations change the environment (and perhaps the-st@mw store may be used
in, e.g.,var I = E).

We introduce a new syntactic categdpyc of declarations, ranged over 13y as:
D :=const] = E |var I =E |procI(1,);C| fun I(I); E | Dy; Dy

and each declaration generates a new little piece of enmieoit socconst I = E generates
e/I wheree is E’'s value, andvar I = E generates/] where. is a new location updated
with E’s value.

4 Continuation machinery and useful functions

Command continuations
Cc = Store — Ans

Ans is the domain of final answers and is language dependentbaysicontains a special
error element. We uses to range ove€'c.

Expression continuations
Ec= FEv — Store — Ans, SOFc= Fv — Cc

We useks to range oveFc.

Declaration continuations
Dc = Env — Store — Ans, soDc = Env — Cec

We useus to range ovePc.

In standard semantics we have the following semantic fansti

E: Exp — Env — Ec — Store — Ans
C:Com — Env— Cc— Store — Ans
D : Dec — Env — Dc — Store — Ans

If there are no errors, jump etc. (i.e. normal flow of contsohot disturbed) then:

E[E]rks =kes whereeis E’s value in environment and stores and
s'is the store aftee’s evaluation

ClClres =c¥d wheres’ is the store resulting from executiiig
in environment and stores

D[D]jrus =wur"s" wherer'isthe environment consisting of the bindings specifie@in
(when evaluated with respecttands) ands’ is the store resulting
from D’s evaluation

For example, on our (coming soon) new language SMALL we have:

E[0jrks =kO0s

ClC;Co] res = C[Cir(As.C[Co] res’) s

(' is executed in environmentand stores to get a stores’ which is passed to the con-
tinuation\s’.C[[Cs] r ¢ s’ which executeg’; in the same environment but in storeand

6

then finally sends the resulting store onctoNote that since commands do not change
environments, the same environmem$ passed to both commands.

Dlconst I = E]rus= E[E]r (\e, s .u(e/I)s) s

Heree’s valuee is bound to! to form the little environment /I which is passed on to
together with store’ resulting fromFE’s evaluation.

We'll see the rest of the clauses in chapter 6 (handed out, Bome useful continuation
transforming functions:

1. cont : Ec — Ec

cont k e s checks that is a location and then looks up its contents in the store
and passed the results, together withio k. If e is not a location or unused then
cont kes=error

cont ke s =isLoce — (s e=unused — error, k(e s)s), error
which we can also (as is conventional) write:

cont = Ak, e, s.isLoce — (s e = unused — error, k(e s)s), error

2. update : Loc — Cc — Ec

update ¢ ¢ e s Storese at location: in stores and passes the resulting store-tdf e
is not storable then we get an error.

update = X 1, ¢, e, s.isSv e — c(s[e/t]), error

3. ref: Ec— Ec

ref k e s gets un unused location form) updates it withe and passes it, and the
updated store, to. If there are no unused locations available (the store [sthun
we get an error.

ref = Ak, e, s.new s = error — error, update (new s)(k(new s))e s

4. deref : Ec — Ec

deref k e s tests to see i¢ is a location and if it is it passes the contents according
to s, together withs, to k, If e is not a location then ands are passed th.

deref = Ak,e,s.isLoce — cont ke s, kes

5. err:Ce

err is the error continuation, i.e. it always says that the rét@program is ignored
and we have an error.

err = \ s.error

5 Assignment and L and R values

In I; := I, what happens, since both identifiers denote locations?

Either (1) the location referred to by is stored in the location referred to By or (2) the
contents of the location referred to by is stored in the location referred to By.

(2) is the usual meaning for most programming languages.ayvéwst the right-hand sides
of assignments aréere ferenced, i.e. have their values looked up in a store if they are a
location.

This gives us the usual semantics for assignment. Formallgave:

C[Il:=FE]rcs = E[I]rks
where ky = Aey, sy.isLoc ey — E[E] r ko s1,error
where ky = \eay, so.deref ks es So
where ks = Xes, s3.update ey ¢ e3 S3

Here! is evaluated and the result is passedtowhich checks that it has been passed a
location and then evaluatds, passing on its result th,. k, dereferences the value &f

if necessary, getting a storable value, and passes thd tesul This then updates the
location with the value, and passes control on.to

(Note...A piece of\-calculus machinery: the expressian.y = can be simplified to jusy
because\z.y x applied toe is (Az.y x) e which isy e.)

Using the simplification in the Note, we have:
ks = update e ¢

and
ko = deref ks = deref (update e; ¢) = deref (update (e; c))

and if we write an explicit function application agve have

ko = deref ; update ; e; ; ¢

> ki = Xey.isLoc ey — E[E] r; deref ; update ; ey ; c,err
= Xe1.Loc?(A\e.E[E] r; deref ; update v ; c) e;
= Loc? \o.E[E] r; deref ; update ¢ ; ¢
and so finally

ClL:=E]rc =E[I]r; Loct \e.E[E] r; deref ; update v ; c

whereLoc? k e s passeg ands to k if e is a location, and isrror otherwise.

