
COMP313-08A
Programming Languages

Notes on Standard Semantics

Steve Reeves, heavily based on Mike Gordon’s book—these notes are brief,
so you need to take further notes at the lectures and read the book.

May 13, 2008

1 Standard Semantics

For “real” languages we need more heavy-duty apparatus thanthat used for TINY. Standard
semantics is intended for real languages and it brings in ideas like:

1. states are not directly transformed (by expressions and commands) but indirectly via
continuations;

2. identifiers are not bound directly to values but via the intermediary idea oflocations
or variables, and using this idea we can handle sharing and aliasing.

2 Continuations

Read section 5.1 of Gordon for a fuller, more detailed, account.

These model “the rest of the program”.

We make the denotations of constructs depend on the rest of the program (thecontinuation
of the program)—this is where each construct will pass its result.

Usually, where no error occurs, it is the code following the current construct that takes
control. This is thenormal continuation. If an error occurs (or a jump...) then control
passes to some other continuation.

1

A continuation is a function which takes “the answer so far” and, by being “the rest of the
program”, transforms this into the “final answer”.

For example, in TINYI := E; C is such that the answer so far after doingI := E (which
is some state) is passed to the rest of the program, i.e.C, and the final answer is the state
got from doingC on the intermediate state.

The answer so far after doingE, i.e. what is passed toI := ; C is a value (E’s value)
together with a state (the state after doingE).

The first kind of continuation, modelling the rest of the program after a command, are
command continuations from the domainCont where

Cont = State → [State + {error}]

The second kind of continuation, modelling the rest fo the program after an expression, are
expression continuations from the domainEcont where

Econt = V alue → State → [State + {error}]

Note that
Econt = V alue → Cont

Now the semantic domains for TINY, which were

E : Exp → State → [[V alue × State] + {error}]

and
C : Com → State → [State + {error}]

become:
E ′ :: Exp → Econt → State → [State + {error}]

which is
E ′ :: Exp → Econt → Cont

and
C ′ : Com → Cont → State → [State + {error}]

which is
C ′ : Com → Cont → Cont

In general we have:

E ′JEK k s =











k v s′, whereE has valuev and transformss to s′

error, otherwise
(1)

2

and

C ′JCK c s =











c s′, whereC transformss to s′

error, otherwise
(2)

For example
C ′JC1; C2K c s = C ′JC1K(C

′JC2K c)s

2.1 Things to do with output

Three problems regarding output with what we have said so far:

1. It is not natural to say that the result of running a programis the whole final state; we
usually think of just the output component as being “the result”;

2. by making output part of the state then we have made the output just as accessible
to programs as the memory or the input are, but this is not natural either since once
something is output it is no longer accessible to the program;

3. we have assumed that output is a finite sequence of values, but for a non-terminating
program this is not true.

So, we remove output from the state and change the type of continuations. We get:

State = Memory × Input
Memory = Ide → [V alue + {unbound}]
Input = V alue∗

V alue = Num + Bool
Cont = State → Ans
Econt = V alue → Cont
Ans = {error, stop} + [V alue × Ans]

The domainAns of final answers is, note, recursive, so can express the results of a non-
terminating program. Also note that a final answer is either apair consisting of eithererror
or stop and a finite sequence of answers, or it is an infinite sequence of answers (with no
error or stop).

This change means that the clause giving the output command its meaning now has to be:

CJoutput EK c = EJEKλv, s.(v, cs)

so E is evaluated to get a valuev and a new states and the final answer isv followed
by whatever the rest of the programc gives starting with states. This means that if the
program crashes after outputting some values then those values are not lost (which they

3

would be using the original way of doing things). To see this,try the commandoutput 0
with the “always an error” continuationλs.error on the new and old clauses for output.

If the program is the (probably composite) commandC thenCJCK(λs.stop) s will even-
tually outputstop if the program terminates normally when started in states. If it never
terminates thenstop is never output.

The domainAns is language dependent.

3 Environments, locations and stores and scope

Often in a language identifiers are not bound to values but tovariables or locations.

This allowssharing or aliasing.

Sharing happens if we declare a procedure (method) by

procedure P (var x, y : int) < statements >

and then callP (z, z) then inside the body (inside< statements >) bothx andy will share
the variable denoted byz.

So, if sharing can happen we have to model it. First we introduce locations and then
stores. A store associates locations with values:

Store = Loc → [Sv + {unused}]

and hereSv is a domain of storable values. These are language dependent. What can be
stored in a language is one dimension used to classify languages. It is conventional to use
ss to range over stores,ιs to range over locations andvs to range over storable values.

To model identifiers and their denotations we have the idea ofenvironment. These asso-
ciate identifiers with locations:

Env = Ide → [Dv + {unbound}]

Again Dv, the denotable values, are language dependent. They form another dimension
for classifying languages. It is conventional to users to range over environments andds
to range over denotable values. usuallyDv = Loc but other things may be denotable
too—constants, arrays, records, procedures etc.

We also use the domain of expressible valuesEv and usees to range over this.

Next, scope. Commands change thecontents of locations, but not the way identifiers bind

4

to locations. Consider:
begin integer x;

.

.
x := 1;
.
.
x := 2;
.
.

end

wherex denotes a fixedlocation, and then consider:

begin integer x;
integer y;
.
.
x := 1;
.
begin integer x;

.

.
x := 2;
.
.

end
.
.
.

end

The x occurrences in the inner and outer blocks denote different locations. Sincey is
not declared in the inner block it denotes the same location throughout. Thescope of a
declaration is where it holds. The inner block is ahole in the scope of the outer declaration
of x, but not ofy.

In standard semantics:

• commands change the store butnot the environment;

• declarations change the environment (and perhaps the store—new store may be used
in, e.g.,var I = E).

We introduce a new syntactic categoryDec of declarations, ranged over byD as:

D ::= const I = E | var I = E | proc I(I1); C | fun I(I1); E | D1; D2

and each declaration generates a new little piece of environment: soconst I = E generates
e/I wheree is E’s value, andvar I = E generatesι/I whereι is a new location updated
with E’s value.

5

4 Continuation machinery and useful functions

Command continuations
Cc = Store → Ans

Ans is the domain of final answers and is language dependent but always contains a special
error element. We usecs to range overCc.

Expression continuations

Ec = Ev → Store → Ans, soEc = Ev → Cc

We useks to range overEc.

Declaration continuations

Dc = Env → Store → Ans, soDc = Env → Cc

We useus to range overDc.

In standard semantics we have the following semantic functions:

E : Exp → Env → Ec → Store → Ans
C : Com → Env → Cc → Store → Ans
D : Dec → Env → Dc → Store → Ans

If there are no errors, jump etc. (i.e. normal flow of control is not disturbed) then:

EJEK r k s = k e s′ wheree is E’s value in environmentr and stores and
s′ is the store aftere’s evaluation

CJCK r c s = c s′ wheres′ is the store resulting from executingC
in environmentr and stores

DJDK r u s = u r′ s′ wherer′ is the environment consisting of the bindings specified inD
(when evaluated with respect tor ands) ands′ is the store resulting
from D’s evaluation

For example, on our (coming soon) new language SMALL we have:

EJ0K r k s = k 0 s

CJC1; C2K r c s = CJC1Kr(λs′.CJC2K r c s′) s

C1 is executed in environmentr and stores to get a stores′ which is passed to the con-
tinuationλs′.CJC2K r c s′ which executesC2 in the same environment but in stores′ and

6

then finally sends the resulting store on toc. Note that since commands do not change
environments, the same environmentr is passed to both commands.

DJconst I = EK r u s = EJEK r (λe, s′.u(e/I) s′) s

Heree’s valuee is bound toI to form the little environmente/I which is passed on tou
together with stores′ resulting fromE’s evaluation.

We’ll see the rest of the clauses in chapter 6 (handed out). First, some useful continuation
transforming functions:

1. cont : Ec → Ec

cont k e s checks thate is a location and then looks up its contents in the stores
and passed the results, together withs, to k. If e is not a location or unused then
cont k e s = error

cont k e s = isLoc e → (s e = unused → error, k(e s)s), error

which we can also (as is conventional) write:

cont = λ k, e, s.isLoc e → (s e = unused → error, k(e s)s), error

2. update : Loc → Cc → Ec

update ι c e s storese at locationι in stores and passes the resulting store toc. If e
is not storable then we get an error.

update = λ ι, c, e, s.isSv e → c(s[e/ι]), error

3. ref : Ec → Ec

ref k e s gets un unused location forms, updates it withe and passes it, and the
updated store, toc. If there are no unused locations available (the store is full) then
we get an error.

ref = λ k, e, s.new s = error → error, update (new s)(k(new s))e s

4. deref : Ec → Ec

deref k e s tests to see ife is a location and if it is it passes the contents according
to s, together withs, to k, If e is not a location thene ands are passed tok.

deref = λk, e, s.isLoc e → cont k e s, k e s

5. err : Cc

err is the error continuation, i.e. it always says that the rest of the program is ignored
and we have an error.

err = λ s.error

7

5 Assignment and L and R values

In I1 := I2 what happens, since both identifiers denote locations?

Either (1) the location referred to byI2 is stored in the location referred to byI1 or (2) the
contents of the location referred to byI2 is stored in the location referred to byI1.

(2) is the usual meaning for most programming languages. We say that the right-hand sides
of assignments aredereferenced, i.e. have their values looked up in a store if they are a
location.

This gives us the usual semantics for assignment. Formally we have:

CJI := EK r c s = EJIK r k1 s
where k1 = λe1, s1.isLoc e1 → EJEK r k2 s1, error

where k2 = λe2, s2.deref k3 e2 s2

where k3 = λe3, s3.update e1 c e3 s3

HereI is evaluated and the result is passed tok1, which checks that it has been passed a
location and then evaluatesE, passing on its result tok2. k2 dereferences the value ofE
if necessary, getting a storable value, and passes the result to k3. This then updates the
location with the value, and passes control on toc.

(Note...A piece ofλ-calculus machinery: the expressionλx.y x can be simplified to justy
becauseλx.y x applied toe is (λx.y x) e which isy e.)

Using the simplification in the Note, we have:

k3 = update e1 c

and
k2 = deref k3 = deref (update e1 c) = deref (update (e1 c))

and if we write an explicit function application as; we have

k2 = deref ; update ; e1 ; c

so
k1 = λe1.isLoc e1 → EJEK r ; deref ; update ; e1 ; c, err

= λe1.Loc?(λι.EJEK r ; deref ; update ι ; c) e1

= Loc? λι.EJEK r ; deref ; update ι ; c

and so finally

CJI := EK r c = EJIK r ; Loc? λι.EJEK r ; deref ; update ι ; c

whereLoc? k e s passese ands to k if e is a location, and iserror otherwise.

8

