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Adversarial Search

Games

• Competitive multi-agent environments give rise to adversarial

search problems (also known as games)

• Unpredictability of other agent introduces contingencies

• Mathematical game theory views any multiagent environment

as a game

• Zero-sum games: utility values at end of game are always

equal and opposite

• Games of perfect information: fully-observable environments

• Abstract nature makes games useful for AI research

– States and actions are easy to represent
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Adversarial Search

A game as a search problem

• Has the following components:

– Initial state: includes the board position and identifies the

player to move

– Successor function: returns list of (move, state) pairs, each

indicating a legal move and the resulting state

– Terminal test: determines when the game is over (i.e., when

we are in a terminal state)

– Utility function: gives a numeric value in terminal states

(i.e., -1, 0, +1 in chess)

• We will call the first player MAX and the second player MIN

(and state utility values from MAX’s perspective)

• Initial state and legal moves define game tree
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Adversarial Search

A partial game tree for tic-tac-toe
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Adversarial Search

Optimal strategies

• MIN has something to say about outcome of game: need

contingent strategy

• Optimal strategy: leads to outcome at least as good as any other

strategy when playing infallible opponent

• Optimal strategy can be determined using minimax value of

each node:

– Utility (for MAX) of being in state, assuming both players

play optimally from there to the end of the game

MINIMAX − V ALUE(n) =










Utility(n) if n is a terminal state

maxs∈Successors(n)MINIMAX − V ALUE(s) if n is a MAX node

mins∈Successors(n)MINIMAX − V ALUE(s) if n is a MIN node
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Adversarial Search

A two-ply game tree
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Adversarial Search

The minimax algorithm
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Adversarial Search

Properties of the minimax algorithm

• Complete?

• Time complexity?

• Space complexity?

• Optimal?
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Adversarial Search

Properties of the minimax algorithm

• Complete?

– Yes, if tree is finite

• Time complexity?

• Space complexity?

• Optimal?
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Adversarial Search

Properties of the minimax algorithm

• Complete?

– Yes, if tree is finite

• Time complexity?

– O(bm) (depth-first exploration)

• Space complexity?

• Optimal?
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Adversarial Search

Properties of the minimax algorithm

• Complete?

– Yes, if tree is finite

• Time complexity?

– O(bm) (depth-first exploration)

• Space complexity?

– O(bm)

• Optimal?
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Adversarial Search

Properties of the minimax algorithm

• Complete?

– Yes, if tree is finite

• Time complexity?

– O(bm) (depth-first exploration)

• Space complexity?

– O(bm)

• Optimal?

– Yes, against an optimal opponent. Otherwise? No.
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Adversarial Search

Tree for game with three players

to move
A

B

C

A

( 1, 2, 6) ( 4, 2, 3) ( 6, 1, 2) ( 7, 4,−1) ( 5,−1,−1) (−1, 5, 2) (7, 7,−1) ( 5, 4, 5)

( 1, 2, 6) ( 6, 1, 2) (−1, 5, 2) ( 5, 4, 5)

( 1, 2, 6) (−1, 5, 2)

( 1, 2, 6)

X
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Adversarial Search

Alpha-beta pruning

• Minimax search: number of game states to be examined is

exponential in number of moves

• Alpha-beta pruning can effectively cut exponent in half

• It turns out that we can compute the correct minimax decision

without looking at every node in the game tree

• Idea: prune branches that cannot possibly influence the final

decision

• Maintains two parameters:

– α = the value of the best choice found so far at any choice

point along the path for MAX

– β = the value of the best choice found so far at any choice

point along the path for MIN
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Adversarial Search

Alpha-beta pruning example
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Adversarial Search

Alpha-beta pruning: the general case
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Adversarial Search

Alpha-beta pruning: the algorithm

function ALPHA-BETA-SEARCH(state) returns an action

inputs: state, current state in game

v ← MAX-VALUE(state,−∞, +∞)

return the action in SUCCESSORS(state) with value v

function MAX-VALUE(state,α, β) returns a utility value

inputs: state, current state in game

α/β, the value fo the best alternative for MAX/MIN along the path to state

if TERMINAL-TEST(state) then return UTILITY(state)

v ← −∞

for a, s in SUCCESSORS(state) do

v ← MAX(v, MIN-VALUE(s, α, β))

α← MAX(α, v)

if v ≥ β then return v

return v

function MIN-VALUE(state,α, β) returns a utility value

inputs: state, current state in game

α/β, the value fo the best alternative for MAX/MIN along the path to state

if TERMINAL-TEST(state) then return UTILITY(state)

v ← +∞

for a, s in SUCCESSORS(state) do

v ← MIN(v, MAX-VALUE(s, α, β))

β ← MIN(β, v)

if v ≤ α then return v

return v
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Adversarial Search

Alpha-beta pruning: properties

• Pruning does not affect the final result

• Good move odering improves effectiveness of pruning

• With “perfect” ordering, time complexity = O(bm/2)

– Doubles depth of search

– Can easily reach depth 8 and play good chess

• A “simple” example of the value of reasoning about which

computations are relevant (a form of metareasoning)
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Adversarial Search

Evaluation functions

(a) (b) White to moveWhite to move

• Often linear combination:

Eval(s) = w1f1(s) + w2f2(s) + ... + wnfn(s)

• E.g.: w1 = 9 with f1(s)=(number of white queens) - (number of

black queens), etc.
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Adversarial Search

Cutting off search

• Next step: replace terminal test in alpha-beta pruning by

if CUTOFF-TEST(state, depth) then return EVAL(state)

– E.g., use estimate provided by evaluation function once

certain depth has been reached (instead of searching further)

• Problem: abrupt swings in evaluation function

– Trick: quiescence search expands states further that may

lead to large changes in the evaluation function

• Problem: horizon effect

– Trick: singular extensions (explore moves further that are

“clearly” better)

• Further speedup by forward pruning: some moves are pruned

immediately without further consideration (dangerous)
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Adversarial Search

The horizon effect

Black to move
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Adversarial Search

Games including element of chance

• Example: backgammon

• Game tree includes chance nodes

• Need to replace minimax value by expectiminimax value

• Gives perfect play

EXPECTIMINIMAX(n) =


















Utility(n) if n is a terminal state

maxs∈Successors(n)EXPECTIMINIMAX(s) if n is a MAX node

mins∈Successors(n)EXPECTIMINIMAX(s) if n is a MIN node
∑

s∈Successors(n)
P (s) × EXPECTIMINIMAX(s) if n is a chance node
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Adversarial Search

A backgammon position
1 2 3 4 5 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 15 14 13

0

25

• Legal moves: (5-10, 5-11), (5-11, 19-24), (5-10, 10-16), and (5-11,

11-16)
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Adversarial Search

Schematic game tree for a backgammon position
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Adversarial Search

Position evaluation in games with chance nodes
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Adversarial Search

Complexity of EXPECTIMINIMAX

• Has to consider all possible dice rolls: time complexity O(bmnm),

where n is the number of distinct rolls

• I.e. chance factor introduces huge extra cost

• It is possible to adapt alpha-beta pruning to game trees with

chance nodes

– Treatment of MAX and MIN nodes remains the same

– Pruning decision for chance node can be made by computing

upper bound on expected value

– Requirement: bounds on possible values of utility function

(e.g. all values are between +3 and -3)

– Why? Otherwise we would need to explore all successors

because average could be anything
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Adversarial Search

State-of-the-art game programs (I)

• Chess: Deep Blue

– Parallel computer with 30 standard processors, and 480

custom chess processors

– Often reaches depth 14 of the search tree

– Uses iterative-deepening alpha-beta search, evaluation

function with 8,000 features, opening book, endgame database

• Checkers: Chinook

– Uses alpha-beta search, pre-computed database of 444 billion

positions with eight or fewer pieces on board

– Developer Schaeffer believes checkers could be solved

completely by enlarging endgame database
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Adversarial Search

State-of-the-art game programs (II)

• Othello: Logistello

– Smaller search space than chess (usually 5 to 15 legal moves)

– Defeated human world champion 6 games to none

• Backgammon: TD-GAMMON

– Learns evaluation function using reinforcement learning with

neural network techniques

– Search depth 2 or 3

– Ranked among top 3 players in world after playing a million

training games against itself
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Adversarial Search

State-of-the-art game programs (III)

• Go: Goemate and Go4++

– Ranked as weak amateurs

– Branching factor starts at 361 (board is 19 × 19)!

– Programs use pattern recognition with limited search

• Bridge: GIB

– Bridge is multiplayer game of imperfect information

– GIB averages over belief states, taking a random sample of

100 arrangements (there can be 10 million)

– Uses explanation-based generalization to compute and

cache rules for optimum play

– Came 12th in one contest at the 1998 human world

championship
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