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Outline

♦ Exact inference

♦ Approximate inference
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Inference by enumeration

Simple query on the burglary network:
B E

J

A

M

P(B|j, m)
= P(B, j, m)/P (j, m)
= αP(B, j,m)
= αΣeΣaP(B, e, a, j, m)

Rewrite full joint entries using product of CPT entries:
P(B|j, m)
= αΣeΣaP(B)P (e)P(a|B, e)P (j|a)P (m|a)
= αP(B)ΣeP (e)ΣaP(a|B, e)P (j|a)P (m|a)

Recursive depth-first enumeration: O(n) space, O(dn) time
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Evaluation tree
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Inference by variable elimination

Variable elimination algorithm: carry out summations right-to-left,
storing intermediate results to avoid recomputation

Time and space cost O(dkn) for singly connected networks (polytrees)

#P-hard (i.e. worse than NP hard) for multiply connected networks (equiv-
alent to counting 3SAT models)
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Irrelevant variables

Consider the query P (JohnCalls|Burglary = true)
B E

J

A

M

P (J |b) = αP (b)
∑

e
P (e)

∑

a
P (a|b, e)P (J |a)

∑

m
P (m|a)

Sum over m is identically 1; M is irrelevant to the query

Theorem: Y is irrelevant unless Y ∈Ancestors({X}∪E)

Here, X = JohnCalls, E= {Burglary}, and
Ancestors({X}∪E) = {Alarm,Earthquake}
so M is irrelevant
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Inference by stochastic simulation

Outline:
– Sampling from an empty network
– Rejection sampling: reject samples disagreeing with evidence
– Likelihood weighting: use evidence to weight samples
– Markov chain Monte Carlo (MCMC): sample from a stochastic process

whose stationary distribution is the true posterior
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Sampling from an empty network

function Prior-Sample(bn) returns an event sampled from bn

inputs: bn, a belief network specifying joint distribution P(X1, . . . , Xn)

x← an event with n elements

for i = 1 to n do

xi← a random sample from P(Xi | Parents(Xi))

return x
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Rejection sampling

P̂(X|e) estimated from samples agreeing with e

function Rejection-Sampling(X,e, bn,N) returns an estimate of P (X|e)

local variables: N, a vector of counts over X, initially zero

for j = 1 to N do

x←Prior-Sample(bn)

if x is consistent with e then

N[x]←N[x]+1 where x is the value of X in x

return Normalize(N[X])

E.g., estimate P(Rain|Sprinkler = true) using 100 samples
27 samples have Sprinkler = true

Of these, 8 have Rain = true and 19 have Rain = false.

P̂(Rain|Sprinkler = true) = Normalize(〈8, 19〉) = 〈0.296, 0.704〉
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Analysis of rejection sampling

P̂(X|e) = αN(X, e) (algorithm defn.)
= N(X, e)/N(e)
≈ P(X, e)/P (e)
= P(X|e) (defn. of conditional probability)

Hence rejection sampling returns consistent posterior estimates

Problem: hopelessly expensive if P (e) is small

P (e) drops off exponentially with number of evidence variables!
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Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables,
and weight each sample by the likelihood it accords the evidence

function Likelihood-Weighting(X,e, bn,N) returns an estimate of P (X|e)

local variables: W, a vector of weighted counts over X, initially zero

for j = 1 to N do

x,w←Weighted-Sample(bn)

W[x ]←W[x ] + w where x is the value of X in x

return Normalize(W[X ])

function Weighted-Sample(bn,e) returns an event and a weight

x← an event with n elements; w← 1

for i = 1 to n do

if Xi has a value xi in e

then w←w × P (Xi = xi | Parents(Xi))

else xi← a random sample from P(Xi | Parents(Xi))

return x, w
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Likelihood weighting example
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Likelihood weighting analysis

Sampling probability for WeightedSample is

SWS(z, e) = Πl
i = 1P (zi|Parents(Zi))

Weight for a given sample z, e is
w(z, e) = Πm

i = 1P (ei|Parents(Ei))

Weighted sampling probability is
SWS(z, e)w(z, e)

= Πl
i = 1P (zi|Parents(Zi)) Πm

i = 1P (ei|Parents(Ei))
= P (z, e) (by standard global semantics of network)

Hence likelihood weighting returns consistent estimates
but performance still degrades with many evidence variables
because a few samples have nearly all the total weight
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Approximate inference using MCMC

“State” of network = current assignment to all variables.

Generate next state by sampling one variable given Markov blanket
Sample each variable in turn, keeping evidence fixed

function MCMC-Ask(X,e, bn,N) returns an estimate of P (X|e)

local variables: N[X ], a vector of counts over X, initially zero

Z, the nonevidence variables in bn

x, the current state of the network, initially copied from e

initialize x with random values for the variables in Z

for j = 1 to N do

for each Zi in Z do

sample the value of Zi in x from P(Zi|MB(Zi)) given the values in x

N[x ]←N[x ] + 1 where x is the value of X in x

return Normalize(N[X ])
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The Markov chain

With Sprinkler = true, WetGrass = true, there are four states:

Cloudy

RainSprinkler

 Wet
Grass

Cloudy

RainSprinkler

 Wet
Grass

Cloudy

RainSprinkler

 Wet
Grass

Cloudy

RainSprinkler

 Wet
Grass

Wander about for a while, average what you see
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MCMC example contd.

Estimate P(Rain|Sprinkler = true,WetGrass = true)

Sample Cloudy or Rain given its Markov blanket, repeat.
Count number of times Rain is true and false in the samples.

E.g., visit 100 states
31 have Rain = true, 69 have Rain = false

P̂(Rain|Sprinkler = true,WetGrass = true)
= Normalize(〈31, 69〉) = 〈0.31, 0.69〉

Theorem: chain approaches stationary distribution:
long-run fraction of time spent in each state is exactly
proportional to its posterior probability
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Markov blanket sampling

Markov blanket of Cloudy is
Cloudy

RainSprinkler

 Wet
Grass

Sprinkler and Rain
Markov blanket of Rain is

Cloudy, Sprinkler, and WetGrass

Probability given the Markov blanket is calculated as follows:
P (x′i|MB(Xi)) = α×P (x′i|Parents(Xi))ΠZj∈Children(Xi)P (zj|Parents(Zj))

Main computational problems:
1) Difficult to tell if convergence has been achieved
2) Can be slow if Markov blanket is large
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Summary

Exact inference by variable elimination:
– polytime on polytrees, #P-hard on general graphs
– space = time, very sensitive to topology

Approximate inference by LW, MCMC:
– LW does poorly when there is lots of evidence
– LW, MCMC generally insensitive to topology
– Convergence can be very slow with probabilities close to 1 or 0
– Can handle arbitrary combinations of discrete and continuous variables
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