First-Order Logic

Lecturer: Eibe Frank Based on "Artificial Intelligence" by S. Russell and P. Norvig, 2003 Chapter 8

- Why FOL?
- Syntax and semantics of FOL
- Fun with sentences
- Wumpus world in FOL

First-order logic

- Whereas propositional logic assumes the world contains just **facts**, first-order logic assumes it also contains
 - Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries, ...
 - Relations: red, round, bogus, prime, multi storied, ...,
 brother of, bigger than, inside, part of, has color, occured after, owns, comes between, ...
 - Functions: father of, best friend, third inning of, one more than, beginning of, ...

Syntax of FOL: Basic elements

Constants	$KingJohn, 2, \ldots$
Predicates	$Brother, >, \dots$
Functions	$Sqrt, \ LeftLegOf, \ldots$
Variables	x, y, a, b, \ldots
Connectives	$\land \ \lor \ \neg \ \Rightarrow \Leftrightarrow$
Equality	=
Quantifiers	$\forall \exists$

Atomic sentences

Atomic sentence = $predicate(term_1, \dots, term_n)$ or $term_1 = term_2$

Term =
$$function(term_1, ..., term_n)$$

or constant or variable

$$\begin{split} \text{E.g.,} \quad &Brother(KingJohn, RichardTheLionheart) \\ &> (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn))) \end{split}$$

Complex sentences

• Complex sentences are made from atomic sentences using connectives

$$\neg S, \quad S_1 \wedge S_2, \quad S_1 \vee S_2, \quad S_1 \Rightarrow S_2, \quad S_1 \Leftrightarrow S_2$$

E.g. $Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn)$ > $(1, 2) \lor \leq (1, 2)$ > $(1, 2) \land \neg > (1, 2)$

Truth in first-order logic

- Sentences are true with respect to a **model** and an **interpretation**
- Model contains objects and relations among them
- Interpretation specifies referents for
 - constant symbols \rightarrow objects
 - predicate symbols \rightarrow relations
 - function symbols \rightarrow functional relations
- An atomic sentence $predicate(term_1, \ldots, term_n)$ is true iff the objects referred to by $term_1, \ldots, term_n$ are in the relation referred to by predicate

Models for FOL: Example

Universal quantification

- $\forall < variables > < sentence >$
- Everyone at Waikato is smart: $\forall x At(x, Waikato) \Rightarrow Smart(x)$
- Roughly speaking, $\forall x P$ is equivalent to the conjunction of instantiations of P

 $At(KingJohn, Waikato) \Rightarrow Smart(KingJohn)$

- $\land At(Richard, Waikato) \Rightarrow Smart(Richard)$
- $\land \quad At(Waikato, Waikato) \Rightarrow Smart(Waikato)$

 $\wedge \dots$

A common mistake to avoid

- Typically, \Rightarrow is the main connective with \forall .
- Common mistake: using \wedge as the main connective with \forall :

 $\forall x At(x, Waikato) \land Smart(x)$

means "Everyone is at Waikato and everyone is smart"

Existential quantification

- $\exists < variables > < sentence >$
- Someone at Otago is smart: $\exists x At(x, Otago) \land Smart(x)$
- Roughly speaking, ∃xP is equivalent to the disjunction of instantiations of P

 $At(KingJohn, Otago) \land Smart(KingJohn)$

- \lor At(Richard, Otago) \land Smart(Richard)
- \lor $At(Otago, Otago) \land Smart(Otago)$

 \vee ...

Another common mistake to avoid

- Typically, \wedge is the main connective with \exists .
- Common mistake: using \Rightarrow as the main connective with \exists :

 $\exists x At(x, Otago) \Rightarrow Smart(x)$

is true if there is anyone who is not at Otago!

Properties of quantifiers

- $\forall x \forall y$ is the same as $\forall y \forall x$
- $\exists x \exists y \text{ is the same as } \exists y \exists x$
- $\exists x \forall y \text{ is not the same as } \forall y \exists x$
- ∃x∀yLoves(x, y)
 "There is a person who loves everyone in the world"
- $\forall y \exists x Loves(x, y)$

"Everyone in the world is loved by at least one person"

Quantifier duality: each can be expressed using the other
 - ∀xLikes(x, IceCream) ¬∃x¬Likes(x, IceCream)
 - ∃xLikes(x, Broccoli) ¬∀x¬Likes(x, Broccoli)

Fun with sentences

• Brothers are siblings

- ?

• "Sibling" is reflexive

- ?

- One's mother is one's female parent
 - ?

- ?

• A first cousin is a child of a parent's sibling

Fun with sentences

- Brothers are siblings
 - $\forall x, yBrother(x, y) \Rightarrow Sibling(x, y)$
- "Sibling" is reflexive
 - $\forall x, ySibling(x, y) \Leftrightarrow Sibling(y, x)$
- One's mother is one's female parent
 - $\forall x, yMother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y))$
- A first cousin is a child of a parent's sibling
 - $\begin{array}{l} \ \forall x, yFirstCousin(x,y) \Leftrightarrow \\ \exists p, psParent(p,x) \land Sibling(ps,p) \land Parent(ps,y) \end{array}$

Equality

- $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object
- E.g., definition of Sibling in terms of Parent: $\forall x, ySibling(x, y) \Leftrightarrow [\neg(x = y) \land \exists m, f \neg (m = f) \land$ $Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y)]$

Interacting with FOL KBs

- Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at t = 5:
 - TELL(KB, Percept([Smell, Breeze, Glitter], 5))
 - $Ask(KB, \exists aAction(a, 5))$
- Answer: Yes, $\{a/Grab\} \leftarrow$ substitution (binding list)
- Given a sentence S and a substitution σ, Sσ denotes the result of plugging σ into S; e.g.,
 S = Smarter(x, y)
 σ = {x/Hillary, y/Bill}
 Sσ = Smarter(Hillary, Bill)

Page 15

• Ask(KB,S) returns some/all σ such that $KB \models S\sigma$

Knowledge base for the wumpus world

• "Perception"

 $\forall b, g, tPercept([Smell, b, g], t) \Rightarrow Smelled(t) \\ \forall s, b, tPercept([s, b, Glitter], t) \Rightarrow AtGold(t)$

- Reflex: $\forall tAtGold(t) \Rightarrow Action(Grab, t)$
- Reflex with internal state: do we have the gold already? $\forall tAtGold(t) \land \neg Holding(Gold, t) \Rightarrow Action(Grab, t)$
- Holding(Gold, t) cannot be observed \Rightarrow keeping track of change is essential

Deducing hidden properties

• Properties of locations:

 $\forall l, tAt(Agent, l, t) \land Smelled(t) \Rightarrow Smelly(l) \\ \forall l, tAt(Agent, l, t) \land Breeze(t) \Rightarrow Breezy(l)$

- Squares are breezy near a pit:
 - Diagnostic rule—infer cause from effect $\forall y Breezy(y) \Rightarrow \exists x Pit(x) \land Adjacent(x, y)$
 - Causal rule—infer effect from cause $\forall x, yPit(x) \land Adjacent(x, y) \Rightarrow Breezy(y)$
 - Neither of these is complete—e.g., the causal rule doesn't say whether squares far away from pits can be breezy
 - Definition for the *Breezy* predicate: $\forall y Breezy(y) \Leftrightarrow [\exists x Pit(x) \land Adjacent(x, y)]$