First-Order Logic
Lecturer: Eibe Frank
Based on "Artificial Intelligence" by S. Russell and P. Norvig, 2003 Chapter 8

- Why FOL?
- Syntax and semantics of FOL
- Fun with sentences
- Wumpus world in FOL

First-order logic

- Whereas propositional logic assumes the world contains just facts, first-order logic assumes it also contains
- Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries, ...
- Relations: red, round, bogus, prime, multi storied, ..., brother of, bigger than, inside, part of, has color, occured after, owns, comes between, ...
- Functions: father of, best friend, third inning of, one more than, beginning of, ...

Syntax of FOL: Basic elements

Constants KingJohn, 2,...
Predicates Brother, $>, \ldots$
Functions \quad Sqrt, LeftLegOf,...
Variables $\quad x, y, a, b, \ldots$
Connectives $\wedge \vee \neg \Rightarrow \Leftrightarrow$
Equality $=$
Quantifiers $\quad \forall \exists$

Atomic sentences

$$
\begin{aligned}
\text { Atomic sentence }= & \text { predicate }\left(\text { term }_{1}, \ldots, \text { term }_{n}\right) \\
& \text { or term } \\
1 & =\text { term }_{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { Term }= & \text { function }\left(\text { term }_{1}, \ldots, \text { term }_{n}\right) \\
& \text { or constant or variable }
\end{aligned}
$$

E.g., Brother(KingJohn, RichardTheLionheart)
$>(\operatorname{Length}(\operatorname{LeftLegOf(\text {Richard})),\text {Length}(\operatorname {LeftLegOf(KingJohn~})))~}$

Complex sentences

- Complex sentences are made from atomic sentences using connectives

$$
\neg S, \quad S_{1} \wedge S_{2}, \quad S_{1} \vee S_{2}, \quad S_{1} \Rightarrow S_{2}, \quad S_{1} \Leftrightarrow S_{2}
$$

E.g. \quad Sibling (KingJohn, Richard $) \Rightarrow \operatorname{Sibling}($ Richard, KingJohn $)$
$>(1,2) \vee \leq(1,2)$
$>(1,2) \wedge \neg>(1,2)$

Truth in first-order logic

- Sentences are true with respect to a model and an interpretation
- Model contains objects and relations among them
- Interpretation specifies referents for
- constant symbols \rightarrow objects
- predicate symbols \rightarrow relations
- function symbols \rightarrow functional relations
- An atomic sentence predicate $\left(\right.$ term $_{1}, \ldots$, term $\left._{n}\right)$ is true iff the objects referred to by term $_{1}, \ldots$, term $_{n}$ are in the relation referred to by predicate

Models for FOL: Example

Universal quantification

- $\forall<$ variables $><$ sentence $>$
- Everyone at Waikato is smart: $\forall x A t(x$, Waikato $) \Rightarrow \operatorname{Smart}(x)$
- Roughly speaking, $\forall x P$ is equivalent to the conjunction of instantiations of P

```
            At (KingJohn, Waikato) \(\Rightarrow \operatorname{Smart}(\) KingJohn \()\)
\(\wedge\) At(Richard,Waikato) \(\Rightarrow \operatorname{Smart}(\) Richard)
\(\wedge\) At(Waikato, Waikato) \(\Rightarrow \operatorname{Smart}(\) Waikato \()\)
\(\wedge \ldots\)
```


A common mistake to avoid

- Typically, \Rightarrow is the main connective with \forall.
- Common mistake: using \wedge as the main connective with \forall :

$$
\forall x A t(x, \text { Waikato }) \wedge \operatorname{Smart}(x)
$$

means "Everyone is at Waikato and everyone is smart"

Existential quantification

- $\exists<$ variables $><$ sentence $>$
- Someone at Otago is smart: $\exists x \operatorname{At}(x$, Otago $) \wedge \operatorname{Smart}(x)$
- Roughly speaking, $\exists x P$ is equivalent to the disjunction of instantiations of P

```
            At (KingJohn, Otago) \(\wedge\) Smart (KingJohn)
\(\vee A t(\) Richard,Otago \() \wedge \operatorname{Smart}(\) Richard \()\)
\(\vee A t(\) Otago, Otago \() \wedge \operatorname{Smart}(\) Otago \()\)
\(\vee\)...
```


Another common mistake to avoid

- Typically, \wedge is the main connective with \exists.
- Common mistake: using \Rightarrow as the main connective with \exists :

$$
\exists x A t(x, \text { Otago }) \Rightarrow \operatorname{Smart}(x)
$$

is true if there is anyone who is not at Otago!

Properties of quantifiers

- $\forall x \forall y$ is the same as $\forall y \forall x$
- $\exists x \exists y$ is the same as $\exists y \exists x$
- $\exists x \forall y$ is not the same as $\forall y \exists x$
- $\exists x \forall y \operatorname{Loves}(x, y)$
"There is a person who loves everyone in the world"
- $\forall y \exists x \operatorname{Loves}(x, y)$
"Everyone in the world is loved by at least one person"
- Quantifier duality: each can be expressed using the other
- $\forall x \operatorname{Likes}(x$, IceCream $) \quad \neg \exists x \neg \operatorname{Likes}(x$, IceCream $)$
$-\exists x \operatorname{Likes}(x$, Broccoli $) \quad \neg \forall x \neg \operatorname{Likes}(x$, Broccoli)

Fun with sentences

- Brothers are siblings
- ?
- "Sibling" is reflexive
- ?
- One's mother is one's female parent
- ?
- A first cousin is a child of a parent's sibling
- ?

Fun with sentences

- Brothers are siblings
$-\forall x, y \operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y)$
- "Sibling" is reflexive
$-\forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow \operatorname{Sibling}(y, x)$
- One's mother is one's female parent
$-\forall x, y \operatorname{Mother}(x, y) \Leftrightarrow(\operatorname{Female}(x) \wedge \operatorname{Parent}(x, y))$
- A first cousin is a child of a parent's sibling
$-\forall x, y F i r s t C o u s i n(x, y) \Leftrightarrow$ $\exists p, \operatorname{psParent}(p, x) \wedge \operatorname{Sibling}(p s, p) \wedge \operatorname{Parent}(p s, y)$

Equality

- $\operatorname{term}_{1}=t e r m_{2}$ is true under a given interpretation if and only if term $_{1}$ and term $_{2}$ refer to the same object
- E.g., definition of Sibling in terms of Parent:

$$
\begin{aligned}
& \forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow[\neg(x=y) \wedge \exists m, f \neg(m=f) \wedge \\
& \operatorname{Parent}(m, x) \wedge \operatorname{Parent}(f, x) \wedge \operatorname{Parent}(m, y) \wedge \operatorname{Parent}(f, y)]
\end{aligned}
$$

Interacting with FOL KBs

- Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at $t=5$:
- Tell(KB, Percept([Smell, Breeze, Glitter],5))
- $\operatorname{Ask}(K B, \exists \operatorname{action}(a, 5))$
- Answer: Yes, $\{a / G r a b\} \leftarrow$ substitution (binding list)
- Given a sentence S and a substitution $\sigma, S \sigma$ denotes the result of plugging σ into S; e.g.,

$$
\begin{aligned}
& S=\operatorname{Smarter}(x, y) \\
& \sigma=\{x / \text { Hillary, } y / \text { Bill }\} \\
& S \sigma=\operatorname{Smarter}(\text { Hillary }, \text { Bill })
\end{aligned}
$$

- $\operatorname{Ask}(\mathrm{KB}, \mathrm{S})$ returns some/all σ such that $K B \models S \sigma$

Knowledge base for the wumpus world

- "Perception"

$$
\begin{aligned}
& \forall b, g, t \operatorname{Percept}([\text { Smell }, b, g], t) \Rightarrow \operatorname{Smelled}(t) \\
& \forall s, b, t \operatorname{Percept}([s, b, G l i t t e r], t) \Rightarrow \operatorname{AtGold}(t)
\end{aligned}
$$

- Reflex: $\forall t \operatorname{AtGold}(t) \Rightarrow \operatorname{Action}(G r a b, t)$
- Reflex with internal state: do we have the gold already?
$\forall t$ AtGold $(t) \wedge \neg$ Holding $($ Gold,$t) \Rightarrow$ Action $(G r a b, t)$
- Holding (Gold, t) cannot be observed
\Rightarrow keeping track of change is essential

Deducing hidden properties

- Properties of locations:
$\forall l, t A t($ Agent $, l, t) \wedge \operatorname{Smelled}(t) \Rightarrow \operatorname{Smelly}(l)$
$\forall l, t A t($ Agent $, l, t) \wedge \operatorname{Breeze}(t) \Rightarrow \operatorname{Breezy}(l)$
- Squares are breezy near a pit:
- Diagnostic rule - infer cause from effect
$\forall y \operatorname{Breezy}(y) \Rightarrow \exists x \operatorname{Pit}(x) \wedge \operatorname{Adjacent}(x, y)$
- Causal rule-infer effect from cause
$\forall x, y \operatorname{Pit}(x) \wedge \operatorname{Adjacent}(x, y) \Rightarrow \operatorname{Breezy}(y)$
- Neither of these is complete-e.g., the causal rule doesn't say whether squares far away from pits can be breezy
- Definition for the Breezy predicate:
$\forall y \operatorname{Breez} y(y) \Leftrightarrow[\exists x \operatorname{Pit}(x) \wedge \operatorname{Adjacent}(x, y)]$

