Learning from Observations

Chapter 18, Sections 1-3

Outline
\diamond Inductive learning
\diamond Decision tree learning

Learning a model from data

Can involve estimating parameters and/or learning structure of model

Example of parameter estimation: estimating conditional probabilities in Bayesian networks

Practical application: naive Bayes document classifier

Inductive learning (a.k.a. Science)

Simplest form: learn a function from examples (supervised learning)
f is the target function

An example is a pair $x, f(x)$, e.g., | O | O | X |
| :--- | :--- | :--- |
| $X\|X\|$ | | |,+1

Problem: find $a(n)$ hypothesis h such that $h \approx f$
given a training set of examples

Inductive learning method

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)
E.g., curve fitting:

Inductive learning method

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)
E.g., curve fitting:

Inductive learning method

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)
E.g., curve fitting:

Inductive learning method

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)
E.g., curve fitting:

Inductive learning method

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)
E.g., curve fitting:

Inductive learning method

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)
E.g., curve fitting:

Ockham's razor: maximize a combination of consistency and simplicity

Attribute-based representations

Examples described by attribute values (Boolean, discrete, continuous, etc.) E.g., situations where I will/won't wait for a table:

Example	Target										
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_{1}	T	F	F	T	Some	$\$ \$ \$$	F	T	French	$0-10$	T
X_{2}	T	F	F	T	Full	$\$$	F	F	Thai	$30-60$	F
X_{3}	F	T	F	F	Some	$\$$	F	F	Burger	$0-10$	T
X_{4}	T	F	T	T	Full	$\$$	F	F	Thai	$10-30$	T
X_{5}	T	F	T	F	Full	$\$ \$ \$$	F	T	French	>60	F
X_{6}	F	T	F	T	Some	$\$ \$$	T	T	Italian	$0-10$	T
X_{7}	F	T	F	F	None	$\$$	T	F	Burger	$0-10$	F
X_{8}	F	F	F	T	Some	$\$ \$$	T	T	Thai	$0-10$	T
X_{9}	F	T	T	F	Full	$\$$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	$\$ \$ \$$	F	T	Italian	$10-30$	F
X_{11}	F	F	F	F	None	$\$$	F	F	Thai	$0-10$	F
X_{12}	T	T	T	T	Full	$\$$	F	F	Burger	$30-60$	T

Classification of examples is positive (T) or negative (F)

Decision trees

One possible representation for hypotheses
E.g., here is the "true" tree for deciding whether to wait:

Expressiveness

Decision trees can express any function of the input attributes. E.g., for Boolean functions, truth table row \rightarrow path to leaf:

Trivially, \exists a consistent decision tree for any training set $\mathrm{w} /$ one path to leaf for each example (unless f nondeterministic in x) but it probably won't generalize to new examples

Prefer to find more compact decision trees

Hypothesis spaces
How many distinct decision trees with n Boolean attributes??

Hypothesis spaces
How many distinct decision trees with n Boolean attributes??
$=$ number of Boolean functions

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??
= number of Boolean functions
$=$ number of distinct truth tables with 2^{n} rows

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??
= number of Boolean functions
$=$ number of distinct truth tables with 2^{n} rows $=2^{2^{n}}$

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??
$=$ number of Boolean functions
$=$ number of distinct truth tables with 2^{n} rows $=2^{2^{n}}$
E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??
$=$ number of Boolean functions
$=$ number of distinct truth tables with 2^{n} rows $=2^{2^{n}}$
E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., Hungry $\wedge \neg$ Rain)??

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??
$=$ number of Boolean functions
$=$ number of distinct truth tables with 2^{n} rows $=2^{2^{n}}$
E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., Hungry $\wedge \neg$ Rain)??
Each attribute can be in (positive), in (negative), or out $\Rightarrow 3^{n}$ distinct conjunctive hypotheses

More expressive hypothesis space

- increases chance that target function can be expressed
- increases number of hypotheses consistent w/ training set
\Rightarrow may get worse predictions

Aim: find a small tree consistent with the training examples
Idea: (recursively) choose "most significant" attribute as root of (sub)tree

```
function DTL(examples, attributes, default) returns a decision tree
    if examples is empty then return default
    else if all examples have the same classification then return the classification
    else if attributes is empty then return Mode(examples)
    else
    best \(\leftarrow\) Choose-Attribute (attributes, examples)
    tree \(\leftarrow\) a new decision tree with root test best
    for each value \(v_{i}\) of best do
        examples \(_{i} \leftarrow\left\{\right.\) elements of examples with best \(\left.=v_{i}\right\}\)
        subtree \(\leftarrow \mathrm{DTL}\left(\right.\) examples \(_{i}\), attributes - best, \(\operatorname{MODE}(\) examples \(\left.)\right)\)
        add a branch to tree with label \(v_{i}\) and subtree subtree
    return tree
```


Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

Patrons? is a better choice-gives information about the classification

Information

Information answers questions
The more clueless I am about the answer initially, the more information is contained in the answer

Scale: 1 bit = answer to Boolean question with prior $\langle 0.5,0.5\rangle$
Information in an answer when prior is $\left\langle P_{1}, \ldots, P_{n}\right\rangle$ is

$$
H\left(\left\langle P_{1}, \ldots, P_{n}\right\rangle\right)=\sum_{i=1}^{n}-P_{i} \log _{2} P_{i}
$$

(also called entropy of the prior)

Information contd.

Suppose we have p positive and n negative examples at the root
$\Rightarrow H(\langle p /(p+n), n /(p+n)\rangle)$ bits needed to classify a new example
E.g., for 12 restaurant examples, $p=n=6$ so we need 1 bit

An attribute splits the examples E into subsets E_{i}, each of which (we hope) needs less information to complete the classification

Let E_{i} have p_{i} positive and n_{i} negative examples
$\Rightarrow H\left(\left\langle p_{i} /\left(p_{i}+n_{i}\right), n_{i} /\left(p_{i}+n_{i}\right)\right\rangle\right)$ bits needed to classify a new example
\Rightarrow expected number of bits per example over all branches is

$$
\Sigma_{i} \frac{p_{i}+n_{i}}{p+n} H\left(\left\langle p_{i} /\left(p_{i}+n_{i}\right), n_{i} /\left(p_{i}+n_{i}\right)\right\rangle\right)
$$

For Patrons?, this is 0.459 bits, for Type this is (still) 1 bit
\Rightarrow choose the attribute that minimizes the remaining information needed

Example contd.

Decision tree learned from the 12 examples:

Substantially simpler than "true" tree-a more complex hypothesis isn't justified by small amount of data

Performance measurement

How do we know that $h \approx f$? (Hume's Problem of Induction)
Try h on a new test set of examples
(use same distribution over example space as training set)
Learning curve $=\%$ correct on test set as a function of training set size

\square
Learning needed for unknown environments, lazy designers
For supervised learning, the aim is to find a simple hypothesis approximately consistent with training examples

Decision tree learning using information gain
Learning performance $=$ prediction accuracy measured on test set

