Informed search algorithms

Lecturer: Eibe Frank Based on "Artificial Intelligence" by S. Russell and P. Norvig Sections 4.1-4.3

- Best-first search
- Greedy search and A* search
- Heuristics
- Hill-climbing
- Simulated annealing
- Genetic algorithms

Best-first search

- An instance of *tree search* (or *graph search*)
- Idea: expand most desirable unexpanded node
- Need an estimate of "desirability" for each node provided by an evaluation function f(n)
 - Key component: heuristic function h(n) that provides estimated cost of cheapest path from node n to goal node
 - Note: we assume that h(n) = 0 if n goal node
- *fringe* becomes queue sorted according to desirability
- Special cases:
 - Greedy search
 - A^* search

Map of Romania

Greedy best-first search

- Expands node that appears to be closest to goal, i.e. f(n) = h(n)
- Example: $h_{SLD}(n) = \text{straight-line distance from } n \text{ to Bucharest}$
 - Assumes that straight-line distance is correlated with actual road distances
- Note: heuristic function cannot be computed from problem description itself

- Complete?
- Time?
- Space?
- Optimal?

- Complete?
 - No (e.g. going from Iasi to Oradea)
 - Complete in finite spaces with repeated-state checking
- Time?
- Space?
- Optimal?

- Complete?
 - No (e.g. going from Iasi to Oradea)
 - Complete in finite spaces with repeated-state checking
- Time?
 - $O(b^m)$, but a good heuristic can give dramatic improvement
- Space?
- Optimal?

- Complete?
 - No (e.g. going from Iasi to Oradea)
 - Complete in finite spaces with repeated-state checking
- Time?
 - $O(b^m)$, but a good heuristic can give dramatic improvement
- Space?
 - $O(b^m)$ —keeps all nodes in memory
- Optimal?

- Complete?
 - No (e.g. going from Iasi to Oradea)
 - Complete in finite spaces with repeated-state checking
- Time?
 - $O(b^m)$, but a good heuristic can give dramatic improvement
- Space?
 - $O(b^m)$ —keeps all nodes in memory
- Optimal?
 - No

A^* search

- Idea: avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)
 - -g(n) = cost so far to reach n
 - -h(n) =estimated cost to goal from n
 - f(n) = estimated total cost of path through n to goal
- A* search uses an **admissible** heuristic: $h(n) \le h^*(n)$ where $h^*(n)$ is the *true* cost from n.
 - Example: $h_{\text{SLD}}(n)$ never overestimates the actual road distance

\mathbf{A}^* example

Page 16

Page 17

Optimality of A^* (standard proof)

• Suppose some suboptimal goal node G_2 is in the queue and let n be an unexpanded node on a shortest path to an optimal goal G

 $f(G_2) = g(G_2)$ since $h(G_2) = 0$ > g(G) since G_2 is suboptimal $\ge f(n)$ since h is admissible

- Since $f(G_2) > f(n)$, A^{*} will never select G_2 for expansion
- Note: doesn't work for *graph search* because it can discard optimum path to a repeated state

Consistent heuristics

- A heuristic is **consistent** if $h(n) \le c(n, a, n') + h(n')$
- If h is consistent, then

$$f(n') = g(n') + h(n')$$

= $g(n) + c(n, a, n') + h(n')$
$$\geq g(n) + h(n)$$

= $f(n)$

- This means f(n) is nondecreasing along any path
- Hard to find: inconsistent admissible heuristics

Contours for A^*

- If heuristic consistent then A^{*} adds "*f*-contours" of nodes (similar to how breadth-first adds layers)
 - Contour *i* has all nodes with $f = f_i$, where $f_i < f_{i+1}$

- Complete?
- Time?
- Space?
- Optimal?

- Complete?
 - Yes, unless there are infinitely many nodes with $f \leq C^*$
- Time?
- Space?
- Optimal?

- Complete?
 - Yes, unless there are infinitely many nodes with $f \leq C^*$
- Time?
 - Exponential unless $|h(n) h^*(n)| \le O(\log h^*(n))$, where $h^*(n)$ is the true cost of getting from n to the goal
 - I.e. unless error doesn't grow faster than log of path cost
 - This is not the case for most heuristics in practical use
- Space?
- Optimal?

- Complete?
 - Yes, unless there are infinitely many nodes with $f \leq C^*$
- Time?
 - Exponential unless $|h(n) h^*(n)| \le O(\log h^*(n))$, where $h^*(n)$ is the true cost of getting from n to the goal
 - I.e. unless error doesn't grow faster than log of path cost
 - This is not the case for most heuristics in practical use
- Space?
 - Has to keep all nodes in memory
 - Expands all nodes with $f(n) < C^*$, some nodes with $f(n) = C^*$, and no nodes with $f(n) > C^*$
- Optimal?

- Complete?
 - Yes, unless there are infinitely many nodes with $f \leq C^*$
- Time?
 - Exponential unless $|h(n) h^*(n)| \le O(\log h^*(n))$, where $h^*(n)$ is the true cost of getting from n to the goal
 - I.e. unless error doesn't grow faster than log of path cost
 - This is not the case for most heuristics in practical use
- Space?
 - Has to keep all nodes in memory
 - Expands all nodes with $f(n) < C^*$, some nodes with $f(n) = C^*$, and no nodes with $f(n) > C^*$
- Optimal? Yes

Memory-bounded heuristic search

- **SMA**^{*} (simplified memory-bounded A^{*})
 - Proceeds just like A^{*} until memory is full
 - If memory is full, it drops the *worst* node (the one with the highest f-value) and backs up its value to its parent
 - I.e. when all descendants of a node are forgotten, we still have an idea how worthwhile it is to expand the node
 - A subtree is regenerated only when *all other paths* have been shown to be worse than the forgotten path
- Complete if shallowest goal node is reachable with available memory
- Optimal if shallowest optimal goal node is reachable
- Other algorithms: **IDA**^{*} and **RBFS**

Admissible heuristics

- E.g, for the 8-puzzle
 - $-h_1(n) =$ number of misplaced tiles
 - $-h_2(n) =$ total Manhattan distance

Start State

Goal State

$$-h_1(n) = ?$$

 $-h_2(n) = ?$

Admissible heuristics

- E.g, for the 8-puzzle
 - $-h_1(n) =$ number of misplaced tiles
 - $-h_2(n) =$ total Manhattan distance

Goal State

$$-h_1(n) = 8$$

- $h_2(n) = 3 + 1 + 2 + 2 + 3 + 3 + 2 = 18$

Dominance

- If $h_2(n) \ge h_1(n)$ for all n (and both admissible!) then h_2 dominates h_1 and is better for search
- Typical search costs: d = 14
 - IDS = 3,473,941 nodes
 - $A^*(h_1) = 539$ nodes
 - $A^*(h_2) = 113 \text{ nodes}$
- Typical search costs: d = 24
 - IDS \approx 54,000,000,000 nodes
 - $A^*(h_1) = 39,135 \text{ nodes}$
 - $A^*(h_2) = 1,641 \text{ nodes}$

Relaxed problems

- Admissible heuristics can be derived from the exact solution cost of a **relaxed** version of the problem
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, the $h_1(n)$ gives the shortest solution
- If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution
- Key point: the optimal solution cost of a relaxed problem is no greater than the optimal cost of the real problem

More on relaxed problems

- Admissible heuristic for traveling salesman problem: sum of costs for minimum spanning tree
- Lower bound on the shortest TS tour
- Minimum spanning tree can be computed in $O(n^2)$

Pattern databases

- Idea: store exact solution costs for subproblem instances
 - Optimum solution cost of subproblem is lower bound on optimum solution cost of complete problem

- Works really well with **disjoint patterns** where problem can be divided up so that each move only affects one subproblem
 - Then we can just add the costs for the subproblems!

Learning heuristics from experience

- Inductive learning algorithms can be used to learn a heuristic function given some training examples
 - Each example consists of a state from the solution path and the actual cost of the solution from that point
 - Learning algorithms: neural nets, decision tree learners, etc.
- Each example needs to be described by **features** of the state that are relevant to its evaluation
 - E.g.: "number of misplaced tiles" or "number of pairs of adjacent tiles that are also adjacent in goal state"
- Example: heuristic function could be linear combination of features values, i.e. $h(n) = c_1 * x_1(n) + c_2 * x_2(n)$

Local search algorithms

- In many search and **optimization problems**, the path is irrelevant, and we are only interested in the goal state
- Local search algorithms operate by maintaining a single current state
 - Requires only constant space
 - Usually based on a **complete state formulation** where every state is a *potential* solution

Example: traveling salesman problem

• Start with any configuration, perform pairwise changes

Example: *n*-queens

- Put n queens on $n \times n$ board with no two queens on the same row, column, or diagonal
- Move a queen to reduce the number of conflicts

Example: *n*-queens successors

18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
14	12	18	13	15	12	14	14
15	14	14	Ŵ	13	16	13	16
Ŵ	14	17	15	Ŵ	14	16	16
17	Ŵ	16	18	15	Ŵ	15	Ŵ
18	14	Ŵ	15	15	14	Ŵ	16
14	14	13	17	12	14	12	18

- A state with heuristic cost estimate 17 and the costs for its successors
- Cost = number of pairs of queens that are attacking each other

Example: *n*-queens local minimum

• A state with cost 1 and no escape route

Hill-climbing

• "Like climbing Everest in thick fog with amnesia"

Objective function

Ridge

Simulated annealing

• Idea: escape local maxima by allowing some "bad" moves but gradually decrease their size and frequency

Properties of simulated annealing

- In metallurgy **annealing** is the process used to temper or harden metals and glass
 - Material is heated to a high temperature and then gradually cooled down
- It can be shown that simulated annealing reaches the best state if the "temperature" T decreases slowly enough

- Is this an interesting guarantee?

- Devised by Metropolis *et al.*, 1953, for physical process modeling
- Has been used for VLSI layout, airline scheduling, and other large optimization tasks

Local beam search

- Idea: keep track of k states instead of only one (as in hill-climbing search)
 - Begins with k randomly generated states
 - At each step, all successors of all k states are generated
 - If one of them is a goal, the algorithm halts
 - Otherwise, the k best are selected, the rest discarded, and the algorithm repeats
- Stochastic beam search chooses k successors at random, with selection probability being increasing function of node's value
 - Can help preventing premature convergence
 - Similar to process of natural selection

Genetic algorithms

- Variant of stochastic beam search where states are generated by combining two parents (instead of modifying a single state)
 - Starts with k random states (**population**)
 - Each state (or individual) is represented as a string over a finite alphabet
 - Mutation operator is applied after offspring has been generated from selected parents using crossover

Example crossover

• First two parents and first offspring from previous slide

