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• Best-first search

• Greedy search and A∗

search

• Heuristics
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• Simulated annealing

• Genetic algorithms



Informed search algorithms

Best-first search

• An instance of tree search (or graph search)

• Idea: expand most desirable unexpanded node

• Need an estimate of “desirability” for each node provided by an

evaluation function f(n)

– Key component: heuristic function h(n) that provides

estimated cost of cheapest path from node n to goal node

– Note: we assume that h(n) = 0 if n goal node

• fringe becomes queue sorted according to desirability

• Special cases:

– Greedy search

– A∗ search
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Informed search algorithms
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Informed search algorithms

Greedy best-first search

• Expands node that appears to be closest to goal, i.e. f(n) = h(n)

• Example: hSLD(n) = straight-line distance from n to Bucharest

– Assumes that straight-line distance is correlated with actual

road distances

• Note: heuristic function cannot be computed from problem

description itself
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Informed search algorithms

Greedy best-first search exampleGreedy searh example

Arad

366

Chapter 4, Setions 1{2, 4 7
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Informed search algorithms

Greedy best-first search exampleGreedy searh example

Zerind

Arad

Sibiu Timisoara

253 329 374
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Informed search algorithms

Greedy best-first search exampleGreedy searh example

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329 374

366 176 380 193
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Informed search algorithms

Greedy best-first search exampleGreedy searh example

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0
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Informed search algorithms

Properties of greedy best-first search

• Complete?

• Time?

• Space?

• Optimal?
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Informed search algorithms

Properties of greedy best-first search

• Complete?

– No (e.g. going from Iasi to Oradea)

– Complete in finite spaces with repeated-state checking

• Time?

• Space?

• Optimal?
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Informed search algorithms

Properties of greedy best-first search

• Complete?

– No (e.g. going from Iasi to Oradea)

– Complete in finite spaces with repeated-state checking

• Time?

– O(bm), but a good heuristic can give dramatic improvement

• Space?

• Optimal?
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Informed search algorithms

Properties of greedy best-first search

• Complete?

– No (e.g. going from Iasi to Oradea)

– Complete in finite spaces with repeated-state checking

• Time?

– O(bm), but a good heuristic can give dramatic improvement

• Space?

– O(bm)—keeps all nodes in memory

• Optimal?
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Informed search algorithms

Properties of greedy best-first search

• Complete?

– No (e.g. going from Iasi to Oradea)

– Complete in finite spaces with repeated-state checking

• Time?

– O(bm), but a good heuristic can give dramatic improvement

• Space?

– O(bm)—keeps all nodes in memory

• Optimal?

– No
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Informed search algorithms

A∗ search

• Idea: avoid expanding paths that are already expensive

• Evaluation function f(n) = g(n) + h(n)

– g(n) = cost so far to reach n

– h(n) = estimated cost to goal from n

– f(n) = estimated total cost of path through n to goal

• A∗ search uses an admissible heuristic: h(n) ≤ h∗(n) where

h∗(n) is the true cost from n.

– Example: hSLD(n) never overestimates the actual road

distance
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Informed search algorithms

A∗ example A� searh example

Arad

366=0+366

Chapter 4, Setions 1{2, 4 17
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Informed search algorithms

A∗ example A� searh example

Zerind

Arad

Sibiu Timisoara

447=118+329 449=75+374393=140+253
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Informed search algorithms

A∗ example A� searh example

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380
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Informed search algorithms

A∗ example A� searh example

Zerind

Arad

Sibiu

Arad

Timisoara

Fagaras Oradea

447=118+329 449=75+374

646=280+366 415=239+176

Rimnicu Vilcea

Craiova Pitesti Sibiu

526=366+160 553=300+253417=317+100

671=291+380
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Informed search algorithms

A∗ example A� searh example

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380
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Informed search algorithms

A∗ example A� searh example

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380
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Informed search algorithms

Optimality of A∗ (standard proof)

• Suppose some suboptimal goal node G2 is in the queue and let n

be an unexpanded node on a shortest path to an optimal goal G

Optimality of A� (standard proof)Suppose some suboptimal goal G2 has been generated and is in the queue.Let n be an unexpanded node on a shortest path to an optimal goal G1.

G

n

G2

Start

f(G2) = g(G2) sine h(G2) = 0> g(G1) sine G2 is suboptimal� f(n) sine h is admissibleSine f(G2) > f(n), A� will never selet G2 for expansion Chapter 4, Setions 1{2, 4 23

f(G2) = g(G2) since h(G2) = 0

> g(G) since G2 is suboptimal

≥ f(n) since h is admissible

• Since f(G2) > f(n), A∗ will never select G2 for expansion

• Note: doesn’t work for graph search because it can discard

optimum path to a repeated state
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Informed search algorithms

Consistent heuristics

• A heuristic is consistent if

h(n) ≤ c(n, a, n′) + h(n′)

• If h is consistent, then

f(n′) = g(n′) + h(n′)

= g(n) + c(n, a, n′) + h(n′)

≥ g(n) + h(n)

= f(n)

• This means f(n) is nonde-

creasing along any path

• Hard to find: inconsistent

admissible heuristics

Proof of lemma: ConsistenyA heuristi is onsistent if
n

c(n,a,n’)

h(n’)

h(n)

G

n’

h(n) � (n; a; n0) + h(n0)If h is onsistent, we havef(n0) = g(n0) + h(n0)= g(n) + (n; a; n0) + h(n0)� g(n) + h(n)= f(n)I.e., f(n) is nondereasing along any path.
Chapter 4, Setions 1{2, 4 30
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Informed search algorithms

Contours for A∗

• If heuristic consistent then A∗ adds “f -contours” of nodes

(similar to how breadth-first adds layers)

– Contour i has all nodes with f = fi, where fi < fi+1
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Informed search algorithms

Properties of A∗ search

• Complete?

• Time?

• Space?

• Optimal?
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Informed search algorithms

Properties of A∗ search

• Complete?

– Yes, unless there are infinitely many nodes with f ≤ C∗

• Time?

• Space?

• Optimal?
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Informed search algorithms

Properties of A∗ search

• Complete?

– Yes, unless there are infinitely many nodes with f ≤ C∗

• Time?

– Exponential unless |h(n) − h∗(n)| ≤ O(log h∗(n)),

where h∗(n) is the true cost of getting from n to the goal

– I.e. unless error doesn’t grow faster than log of path cost

– This is not the case for most heuristics in practical use

• Space?

• Optimal?
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Informed search algorithms

Properties of A∗ search

• Complete?

– Yes, unless there are infinitely many nodes with f ≤ C∗

• Time?

– Exponential unless |h(n) − h∗(n)| ≤ O(log h∗(n)),

where h∗(n) is the true cost of getting from n to the goal

– I.e. unless error doesn’t grow faster than log of path cost

– This is not the case for most heuristics in practical use

• Space?

– Has to keep all nodes in memory

– Expands all nodes with f(n) < C∗, some nodes with

f(n) = C∗, and no nodes with f(n) > C∗

• Optimal?
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Informed search algorithms

Properties of A∗ search

• Complete?

– Yes, unless there are infinitely many nodes with f ≤ C∗

• Time?

– Exponential unless |h(n) − h∗(n)| ≤ O(log h∗(n)),

where h∗(n) is the true cost of getting from n to the goal

– I.e. unless error doesn’t grow faster than log of path cost

– This is not the case for most heuristics in practical use

• Space?

– Has to keep all nodes in memory

– Expands all nodes with f(n) < C∗, some nodes with

f(n) = C∗, and no nodes with f(n) > C∗

• Optimal? Yes
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Informed search algorithms

Memory-bounded heuristic search

• SMA∗ (simplified memory-bounded A∗)

– Proceeds just like A∗ until memory is full

– If memory is full, it drops the worst node (the one with the

highest f -value) and backs up its value to its parent

– I.e. when all descendants of a node are forgotten, we still have

an idea how worthwhile it is to expand the node

– A subtree is regenerated only when all other paths have been

shown to be worse than the forgotten path

• Complete if shallowest goal node is reachable with available

memory

• Optimal if shallowest optimal goal node is reachable

• Other algorithms: IDA∗ and RBFS
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Informed search algorithms

Admissible heuristics

• E.g, for the 8-puzzle

– h1(n) = number of misplaced tiles

– h2(n) = total Manhattan distance

2

Start State Goal State

1

3 4

6 7

5

1

2

3

4

6

7

8

5

8

– h1(n) = ?

– h2(n) = ?
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Informed search algorithms

Admissible heuristics

• E.g, for the 8-puzzle

– h1(n) = number of misplaced tiles

– h2(n) = total Manhattan distance

2

Start State Goal State

1

3 4

6 7

5

1

2

3

4

6

7

8

5

8

– h1(n) = 8

– h2(n) = 3+1+2+2+2+3+3+2 = 18
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Informed search algorithms

Dominance

• If h2(n) ≥ h1(n) for all n (and both admissible!) then h2

dominates h1 and is better for search

• Typical search costs: d = 14

– IDS = 3,473,941 nodes

– A∗(h1) = 539 nodes

– A∗(h2) = 113 nodes

• Typical search costs: d = 24

– IDS ≈ 54,000,000,000 nodes

– A∗(h1) = 39,135 nodes

– A∗(h2) = 1,641 nodes
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Informed search algorithms

Relaxed problems

• Admissible heuristics can be derived from the exact solution cost

of a relaxed version of the problem

• If the rules of the 8-puzzle are relaxed so that a tile can move

anywhere, the h1(n) gives the shortest solution

• If the rules are relaxed so that a tile can move to any adjacent

square, then h2(n) gives the shortest solution

• Key point: the optimal solution cost of a relaxed problem is no

greater than the optimal cost of the real problem
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Informed search algorithms

More on relaxed problems

• Admissible heuristic for traveling salesman problem: sum of costs

for minimum spanning tree

• Lower bound on the shortest TS tour

• Minimum spanning tree can be computed in O(n2)

Relaxed problems ontd.Well-known example: travelling salesperson problem (TSP)Find the shortest tour visiting all ities exatly one

Minimum spanning tree an be omputed in O(n2)and is a lower bound on the shortest (open) tour
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Informed search algorithms

Pattern databases

• Idea: store exact solution costs for subproblem instances

– Optimum solution cost of subproblem is lower bound on

optimum solution cost of complete problem

2

Start State Goal State

1

3 6

7 8

5

1

2

3

4

6

8

5 4

• Works really well with disjoint patterns where problem can be

divided up so that each move only affects one subproblem

– Then we can just add the costs for the subproblems!
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Informed search algorithms

Learning heuristics from experience

• Inductive learning algorithms can be used to learn a

heuristic function given some training examples

– Each example consists of a state from the solution path and

the actual cost of the solution from that point

– Learning algorithms: neural nets, decision tree learners, etc.

• Each example needs to be described by features of the state

that are relevant to its evaluation

– E.g.: “number of misplaced tiles” or “number of pairs of

adjacent tiles that are also adjacent in goal state”

• Example: heuristic function could be linear combination of

features values, i.e. h(n) = c1 ∗ x1(n) + c2 ∗ x2(n)
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Informed search algorithms

Local search algorithms

• In many search and optimization problems, the path is

irrelevant, and we are only interested in the goal state

• Local search algorithms operate by maintaining a single

current state

– Requires only constant space

– Usually based on a complete state formulation where

every state is a potential solution
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Informed search algorithms

Example: traveling salesman problem

• Start with any configuration, perform pairwise changes

Example: Travelling Salesperson ProblemStart with any omplete tour, perform pairwise exhanges
Chapter 4, Setions 1{2, 4 37
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Informed search algorithms

Example: n-queens

• Put n queens on n × n board with no two queens on the same

row, column, or diagonal

• Move a queen to reduce the number of conflicts
Example: n-queensPut n queens on an n� n board with no two queens on the samerow, olumn, or diagonalMove a queen to redue number of onits
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Informed search algorithms

Example: n-queens successors
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• A state with heuristic cost estimate 17 and the costs for its

successors

• Cost = number of pairs of queens that are attacking each other
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Informed search algorithms

Example: n-queens local minimum

• A state with cost 1 and no escape route
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Informed search algorithms

Hill-climbing

• “Like climbing Everest in thick fog with amnesia”
Hill-limbing (or gradient asent/desent)\Like limbing Everest in thik fog with amnesia"funtion Hill-Climbing( problem) returns a state that is a loal maximuminputs: problem, a problemloal variables: urrent, a nodeneighbor, a nodeurrent Make-Node(Initial-State[problem℄)loop doneighbor a highest-valued suessor of urrentif Value[neighbor℄ < Value[urrent℄ then return State[urrent℄urrent neighborend
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Informed search algorithms

Objective function

current
state

objective function

state space

global maximum

local maximum

"flat" local maximum

shoulder
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Informed search algorithms

Ridge

February 27, 2008 Based on “Artificial Intelligence” by S. Russell and P. Norvig Page 43



Informed search algorithms

Simulated annealing

• Idea: escape local maxima by allowing some “bad” moves but

gradually decrease their size and frequency

Simulated annealingIdea: esape loal maxima by allowing some \bad" movesbut gradually derease their size and frequenyfuntion Simulated-Annealing( problem, shedule) returns a solution stateinputs: problem, a problemshedule, a mapping from time to \temperature"loal variables: urrent, a nodenext, a nodeT, a \temperature" ontrolling prob. of downward stepsurrent Make-Node(Initial-State[problem℄)for t 1 to 1 doT shedule[t℄if T = 0 then return urrentnext a randomly seleted suessor of urrent�E Value[next℄ { Value[urrent℄if �E > 0 then urrent nextelse urrent next only with probability e� E=T
Chapter 4, Setions 1{2, 4 41
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Informed search algorithms

Properties of simulated annealing

• In metallurgy annealing is the process used to temper or harden

metals and glass

– Material is heated to a high temperature and then gradually

cooled down

• It can be shown that simulated annealing reaches the best state

if the “temperature” T decreases slowly enough

– Is this an interesting guarantee?

• Devised by Metropolis et al., 1953, for physical process modeling

• Has been used for VLSI layout, airline scheduling, and other

large optimization tasks
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Informed search algorithms

Local beam search

• Idea: keep track of k states instead of only one (as in

hill-climbing search)

– Begins with k randomly generated states

– At each step, all successors of all k states are generated

– If one of them is a goal, the algorithm halts

– Otherwise, the k best are selected, the rest discarded, and the

algorithm repeats

• Stochastic beam search chooses k successors at random, with

selection probability being increasing function of node’s value

– Can help preventing premature convergence

– Similar to process of natural selection
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Informed search algorithms

Genetic algorithms

• Variant of stochastic beam search where states are generated by

combining two parents (instead of modifying a single state)

– Starts with k random states (population)

– Each state (or individual) is represented as a string over a

finite alphabet

– Mutation operator is applied after offspring has been

generated from selected parents using crossover

32252124
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(b)
Fitness Function

(c)
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(d)
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(e)
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Informed search algorithms

Example crossover

• First two parents and first offspring from previous slide

+ =
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