LANGUAGE

Chapter 22

Outline

- \diamondsuit Communication
- \diamondsuit Grammar
- \diamondsuit Syntactic analysis
- \diamondsuit Problems
- \diamondsuit Grammar induction

Stages in communication: example

Grammar

Grammar specifies the compositional structure of complex messages

A formal language is a set of strings of terminal symbols

Each string in the language can be analyzed/generated by the grammar

The grammar is a set of rewrite rules, e.g.,

 $S \rightarrow NP VP$ Article $\rightarrow the \mid a \mid an \mid \dots$

Here S is the sentence symbol, NP and VP are nonterminals

Grammar types

Regular: *nonterminal* → *terminal*[*nonterminal*]

 $\begin{array}{c} S \to \boldsymbol{a} S \\ S \to \Lambda \end{array}$

Context-free: $nonterminal \rightarrow anything$

 $S \rightarrow aSb$

Context-sensitive: a single nonterminal in a string is replaced by a string

 $ASB \rightarrow AAaBB$

Recursively enumerable: no constraints

Natural languages probably context-free, parsable in real time!

Wumpus lexicon

 $Noun \rightarrow stench \mid breeze \mid glitter \mid nothing$ $\mid wumpus \mid pit \mid pits \mid gold \mid east \mid \dots$ $Verb \rightarrow is \mid see \mid smell \mid shoot \mid feel \mid stinks$ $\mid go \mid grab \mid carry \mid kill \mid turn \mid \dots$ Adjective $\rightarrow right \mid left \mid east \mid south \mid back \mid smelly \mid \dots$ $Adverb \rightarrow here \mid there \mid nearby \mid ahead$ $| right | left | east | south | back | \dots$ $Pronoun \rightarrow me \mid you \mid I \mid it \mid \ldots$ $Name \rightarrow John \mid Mary \mid Waikato \mid Otago \mid \dots$ Article \rightarrow the | a | an | ... Preposition \rightarrow to | in | on | near | ... Conjunction \rightarrow and \mid or \mid but \mid ... $Digit \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$

Divided into closed and open classes

Wumpus grammar			
$\begin{array}{rcrcr} S & \rightarrow & NP & VP \\ & \mid & S & Conjunction & S \end{array}$	I + feel a breeze I feel a breeze + and + I smell a wumpus		
$\begin{array}{rrrr} NP & \rightarrow & Pronoun \\ & \mid & Noun \\ & \mid & Article \ Noun \\ & \mid & Digit \ Digit \\ & \mid & NP \ PP \\ & \mid & NP \ RelClause \end{array}$	l pits the + wumpus 3 4 the wumpus + to the east the wumpus + that is smelly		
$\begin{array}{rrrr} VP & \rightarrow & Verb \\ & \mid & VP & NP \\ & \mid & VP & Adjective \\ & \mid & VP & PP \\ & \mid & VP & Adverb \end{array}$	stinks feel + a breeze is + smelly turn + to the east go + ahead		
$PP \rightarrow Preposition NP$ $RelClause \rightarrow that VP$	to $+$ the east that $+$ is smelly		

Context-free parsing

Bottom-up parsing works by replacing any substring that matches RHS of a rule with the rule's LHS

Efficient algorithms (e.g., chart parsing, Section 22.3) $O(n^3)$ for context-free, run at several thousand words/sec for real grammars

Language learning

Formal language L_1 may differ from natural language L_2

Adjusting L_1 to agree with L_2 is a learning problem

Real grammars 10–500 pages, insufficient even for "proper" English

Probablistic grammars are an alternative

Real language

Real human languages provide many problems for NLP:

- \diamondsuit ambiguity
- \Diamond anaphora
- \diamondsuit indexicality
- \Diamond metonymy
- \diamondsuit metaphor

etc.

Ambiguity

Squad helps dog bite victim

Helicopter powered by human flies

American pushes bottle up Germans

Anaphora

Using pronouns to refer back to entities already introduced in the text

After Mary proposed to John, they found a preacher and got married.

For the honeymoon, they went to Hawaii

Mary saw a ring through the window and asked John for $\ensuremath{\boldsymbol{it}}$

Mary threw a rock at the window and broke it

Indexicality

Indexical sentences refer to utterance situation (place, time, etc.)

I am over here

Why did **you** do **that**?

Metonymy

Using one noun phrase to stand for another

l've read Shakespeare

Chrysler announced record profits

The ham sandwich on Table 4 wants another beer

Metaphor

"Non-literal" usage of words and phrases, often systematic:

I've tried killing the process but it won't die. Its parent keeps it alive.

A linear-time algorithm for grammar learning

SEQUITUR algorithm developed by Nevill-Manning and Witten at Waikato: learns grammar that generates only one sentence, namely the input text

Basic idea: good grammar is compact grammar (i.e., grammar should compress the input text)

Scans input from left to right, one symbol at a time, building up a grammar for the text seen so far.

Grammar is built by enforcing the following two constraints:

No pair of adjacent symbols must appear more than once in the grammar.

Every rule in the grammar must be used at least twice (apart from the start rule).

Sequitur example

	Input	Grammar	Comments
1	a	$S \to a$	
2	ab	$S \to ab$	
3	abc	$S \to abc$	
4	abcd	$S \to abcd$	
5	abcdb	$S \to abcdb$	
6	abcdbc	$S \to abcdbc$	bc twice
		$S \to aAdA; A \to bc$	
7	abcdbca	$S \to aAdAa; A \to bc$	
8	abcdbcab	$S \rightarrow aAdAab; A \rightarrow bc$	
9	abcdbcabc	$S \to aAdAabc; A \to bc$	bc twice
		$S \to aAdAaA; A \to bc$	aA twice
		$S \to BdAB; A \to bc; B \to aA$	
10	abcdbcabcd	$S \to BdABd; A \to bc; B \to aA$	Bd twice
		$S \to CAC; A \to bc; B \to aA; C \to Bd$	B only once
		$S \to CAC; A \to bc; C \to aAd$	