
Neural networks

Chapter 20, Section 5

Chapter 20, Section 5 1



Outline

♦ Brains

♦ Neural networks

♦ Perceptrons

♦ Multilayer perceptrons

♦ Applications of neural networks

Chapter 20, Section 5 2



Brains

1011 neurons of > 20 types, 1014 synapses, 1ms–10ms cycle time
Signals are noisy “spike trains” of electrical potential

Axon

Cell body or Soma

Nucleus

Dendrite

Synapses

Axonal arborization

Axon from another cell

Synapse

Chapter 20, Section 5 3



McCulloch–Pitts “unit”

Output is a “squashed” linear function of the inputs:

ai← g(ini) = g
(

ΣjWj,iaj

)

Output

Σ
Input

Links

Activation

Function

Input

Function

Output

Links

a0 = −1 ai = g(ini)

ai

g
iniWj,i

W0,i

Bias Weight

aj

Chapter 20, Section 5 4



Activation functions

(a)
 (b)


+1 +1

iniini

g(ini)g(ini)

(a) is a step function or threshold function

(b) is a sigmoid function 1/(1 + e−x)

Changing the bias weight W0,i moves the threshold location

Chapter 20, Section 5 5



Implementing logical functions

AND


W0 = 1.5


W1 = 1


W2 = 1


OR


W2 = 1


W1 = 1


W0 = 0.5


NOT


W1 = -1


W0 = -0.5


McCulloch and Pitts: every Boolean function can be implemented

Chapter 20, Section 5 6



Network structures

Feed-forward networks:
– single-layer perceptrons
– multi-layer perceptrons

Feed-forward networks implement functions, have no internal state

Recurrent networks:
– recurrent neural nets have directed cycles with delays
⇒ have internal state (like flip-flops), can oscillate etc.

Chapter 20, Section 5 7



Feed-forward example

W1,3

1,4W

2,3W

2,4W

W3,5

4,5W

1

2

3

4

5

Feed-forward network = a parameterized family of nonlinear functions:

a5 = g(W3,5 · a3 + W4,5 · a4)

= g(W3,5 · g(W1,3 · a1 + W2,3 · a2) + W4,5 · g(W1,4 · a1 + W2,4 · a2))

Chapter 20, Section 5 8



Perceptrons

Input
Units Units

Output
Wj,i -4 -2 0 2 4x1

-4
-2

0
2

4

x2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Perceptron output

Chapter 20, Section 5 9



Expressiveness of perceptrons

Consider a perceptron with g = step function

Can represent AND, OR, NOT, majority, etc.

Represents a linear separator in input space:

ΣjWjxj > 0 or W · x > 0

I 1

I 2

I 1

I 2

I 1

I 2

?

(a) (b) (c)

0 1

0

1

0

1 1

0

0 1 0 1

xor I 2I 1orI 1 I 2and I 1 I 2

Chapter 20, Section 5 10



Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output y is

E =
1

2
Err

2 ≡
1

2
(y − hW(x))2 ,

Perform optimization search by gradient descent:

∂E

∂Wj
= Err ×

∂Err

∂Wj
= Err ×

∂

∂Wj

(

y − g(Σn
j = 0

Wjxj)
)

= −Err × g′(in)× xj

Simple weight update rule:

Wj ← Wj + α×Err × g′(in)× xj

E.g., +ve error ⇒ increase network output
⇒ increase weights on +ve inputs, decrease on -ve inputs

Chapter 20, Section 5 11



The Perceptron learning rule

Turns out there exists an update rule for threshold perceptrons (where the
activation function is not differentiable):

Wj ← Wj + α×Err × xj

i.e., add/subtract example to/from weight vector if it is classified incorrectly.

Difference to previous update rule: magnitude of udpate differs, but not
direction of weight vector.

The Perceptron learning rule finds a weight vector that perfectly classifies
the training data if the data is linearly separable.

Note: may have to iterate through the training data multiple times!

Chapter 20, Section 5 12



Perceptron learning contd.

Perceptron learning rule converges to a consistent function
for any linearly separable data set

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Pr
op

or
tio

n 
co

rr
ec

t o
n 

te
st

 s
et

Training set size

Perceptron
Decision tree

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Pr
op

or
tio

n 
co

rr
ec

t o
n 

te
st

 s
et

Training set size

Decision tree
Perceptron

Chapter 20, Section 5 13



Multilayer perceptrons

Layers are usually fully connected;
numbers of hidden units typically chosen by hand

Input units

Hidden units

Output units ai

Wj,i

aj

Wk,j

ak

Chapter 20, Section 5 14



Expressiveness of MLPs

All continuous functions w/ 2 layers, all functions w/ 3 layers

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

hW(x1, x2)

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

hW(x1, x2)

Chapter 20, Section 5 15



Back-propagation learning

Output layer: same as for single-layer perceptron,

Wj,i ← Wj,i + α× aj ×∆i

where ∆i = Err i × g′(in i)

Hidden layer: back-propagate the error from the output layer:

∆j = g′(inj)
∑

i
Wj,i∆i .

Update rule for weights in hidden layer:

Wk,j ← Wk,j + α× ak ×∆j .

(Most neuroscientists deny that back-propagation occurs in the brain)

Chapter 20, Section 5 16



Back-propagation derivation

The squared error on a single example is defined as

E =
1

2

∑

i
(yi − ai)

2 ,

where the sum is over the nodes in the output layer.

∂E

∂Wj,i
= −(yi − ai)

∂ai

∂Wj,i
= −(yi − ai)

∂g(in i)

∂Wj,i

= −(yi − ai)g
′(in i)

∂in i

∂Wj,i
= −(yi − ai)g

′(in i)
∂

∂Wj,i







∑

j
Wj,iaj







= −(yi − ai)g
′(in i)aj = −aj∆i

Chapter 20, Section 5 17



Back-propagation derivation contd.

∂E

∂Wk,j
= −

∑

i
(yi − ai)

∂ai

∂Wk,j
= −

∑

i
(yi − ai)

∂g(in i)

∂Wk,j

= −
∑

i
(yi − ai)g

′(in i)
∂in i

∂Wk,j
= −

∑

i
∆i

∂

∂Wk,j







∑

j
Wj,iaj







= −
∑

i
∆iWj,i

∂aj

∂Wk,j
= −

∑

i
∆iWj,i

∂g(inj)

∂Wk,j

= −
∑

i
∆iWj,ig

′(inj)
∂inj

∂Wk,j

= −
∑

i
∆iWj,ig

′(inj)
∂

∂Wk,j







∑

k
Wk,jak







= −
∑

i
∆iWj,ig

′(inj)ak = −ak∆j

Chapter 20, Section 5 18



Back-propagation learning contd.

At each epoch, sum gradient updates for all examples and apply

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300 350 400

T
ot

al
 e

rr
or

 o
n 

tr
ai

ni
ng

 s
et

Number of epochs

Usual problems with slow convergence, local minima

Chapter 20, Section 5 19



Back-propagation learning contd.

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

%
 c

or
re

ct
 o

n 
te

st
 s

et

Training set size

Multilayer network
Decision tree

Chapter 20, Section 5 20



Handwritten digit recognition

3-nearest-neighbor = 2.4% error
400–300–10 unit MLP = 1.6% error
LeNet: 768–192–30–10 unit MLP = 0.9% error

Chapter 20, Section 5 21



Summary

Most brains have lots of neurons; each neuron ≈ linear–threshold unit (?)

Perceptrons (one-layer networks) insufficiently expressive

Multi-layer networks are sufficiently expressive; can be trained by gradient
descent, i.e., error back-propagation

Many applications: speech, driving, handwriting, credit cards, etc.

Chapter 20, Section 5 22


