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Brains

10" neurons of > 20 types, 10'* synapses, 1ms—10ms cycle time
Signals are noisy “spike trains” of electrical potential
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McCulloch—Pitts “unit”

Output is a “squashed” linear function of the inputs:
a; — g(in;) = g (2;W;,a;)
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Activation functions
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(a) is a step function or threshold function

(b) is a sigmoid function 1/(1 4 ¢ ")

Changing the bias weight 11/, ; moves the threshold location
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Implementing logical functions

W, =15 W, =05 W, =-05
W, o= Wy o=
" —
W2 =1 W2 =1
AND OR NOT

McCulloch and Pitts: every Boolean function can be implemented
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Network structures

Feed-forward networks:
— single-layer perceptrons
— multi-layer perceptrons

Feed-forward networks implement functions, have no internal state

Recurrent networks:
— recurrent neural nets have directed cycles with delays
= have internal state (like flip-flops), can oscillate etc.
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Feed-forward example

Feed-forward network = a parameterized family of nonlinear functions:

as = g(Wss-as+ Wys-ay)
= gWs5-gWis-a1+Was-as) +Wis-g(Wiyg-ar+Way-ag))
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Perceptrons

Perceptron output
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Expressiveness of perceptrons

Consider a perceptron with ¢ = step function
Can represent AND, OR, NOT, majority, etc.
Represents a linear separator in input space:
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Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output vy is

1 1
k= §E7”7’2 = é(y — hw(x))”

Perform optimization search by gradient descent:

OF B OErr B 0
= Err = FErr
oW oW oW

= —FErr x ¢'(in) X x;

Simple weight update rule:
W; — W+ ax Errx ¢'(in) x z;

E.g., +ve error = increase network output

= increase weights on +ve inputs, decrease on -ve inputs

(y — g3 _ Wjxy))
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The Perceptron learning rule

Turns out there exists an update rule for threshold perceptrons (where the
activation function is not differentiable):

W;—W;+ax Errxux,
i.e., add/subtract example to/from weight vector if it is classified incorrectly.

Difference to previous update rule: magnitude of udpate differs, but not
direction of weight vector.

The Perceptron learning rule finds a weight vector that perfectly classifies
the training data if the data is linearly separable.

Note: may have to iterate through the training data multiple times!
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Perceptron learning contd.

Perceptron learning rule converges to a consistent function
for any linearly separable data set
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Multilayer perceptrons

Layers are usually fully connected;

numbers of hidden units typically chosen by hand
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Expressiveness of MLPs

All continuous functions w/ 2 layers, all functions w/ 3 layers
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Back-propagation learning

Output layer: same as for single-layer perceptron,
Wj?i — Wj’i + o X a; X A,

where A\; = Err; X 9/<mi)

Hidden layer: back-propagate the error from the output layer:

Aj = g'(ing) S WA .
Update rule for weights in hidden layer:

thj — WAJ + a X arp X A} .

(Most neuroscientists deny that back-propagation occurs in the brain)
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Back-propagation derivation

The squared error on a single example is defined as

1

B=gxm—a),
where the sum is over the nodes in the output layer.
oF Oa; dg(in;)
oW, (v a@)awm = W) oW
— _<y7l — ai)g%mi)@WM — _<y7l — ai)g%m?)@Wj,l (Z WJ 7CLJ)

- —<y7; - ai>g/<in7ﬁ)aj - —CLJA?;

Chapter 20, Section 5 17



Back-propagation derivation contd.
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Back-propagation learning contd.

At each epoch, sum gradient updates for all examples and apply
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Usual problems with slow convergence, local minima
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Back-propagation learning contd.
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Handwritten digit recognition

O/ FHIM|s5| |78
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3-nearest-neighbor = 2.4% error
400-300-10 unit MLP = 1.6% error
LeNet: 768-192-30-10 unit MLP = 0.9% error
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Summary

Most brains have lots of neurons; each neuron == linear—threshold unit (?)
Perceptrons (one-layer networks) insufficiently expressive

Multi-layer networks are sufficiently expressive; can be trained by gradient
descent, i.e., error back-propagation

Many applications: speech, driving, handwriting, credit cards, etc.
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