RATIONAL DECISIONS

Chapter 16

Outline

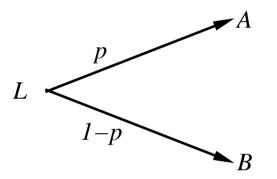
- \diamondsuit Rational preferences
- \diamondsuit Utilities

\diamondsuit Money

 \diamondsuit Decision networks

Preferences

In general, an agent may choose among prizes (A, B, etc.), where a certain outcome is guaranteed, and/or lotteries, where the outcome is not guaranteed teed



Lottery L = [p, A; (1 - p), B]

Notation:

$A \succ B$	A preferred to B
$A \sim B$	indifference between A and B
$A \approx B$	B not preferred to A

Rational preferences

Idea: preferences of a rational agent must obey constraints.

Constraints: $\begin{array}{l}
\underline{Orderability}\\
(A \succ B) \lor (B \succ A) \lor (A \sim B) \\
\underline{Transitivity}\\
(A \succ B) \land (B \succ C) \Rightarrow (A \succ C) \\
\underline{Continuity}\\
A \succ B \succ C \Rightarrow \exists p \ [p, A; \ 1 - p, C] \sim B \\
\underline{Substitutability}\\
A \sim B \Rightarrow \ [p, A; \ 1 - p, C] \sim [p, B; 1 - p, C] \\
\underline{Monotonicity}\\
A \succ B \Rightarrow \ (p \geq q \Leftrightarrow \ [p, A; \ 1 - p, B] \rightleftharpoons [q, A; \ 1 - q, B])
\end{array}$

Rational preferences contd.

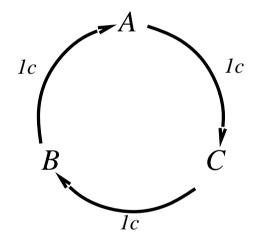
Violating the constraints leads to self-evident irrationality

For example: an agent with intransitive preferences can be induced to give away all its money

If $B \succ C$, then an agent who has C would pay (say) 1 cent to get B

If $A \succ B$, then an agent who has B would pay (say) 1 cent to get A

If $C \succ A$, then an agent who has A would pay (say) 1 cent to get C



Maximizing expected utility

Theorem

Given preferences satisfying the constraints there exists a real-valued function U such that

 $U(A) \ge U(B) \iff A \succeq B$ $U([p_1, S_1; \ldots; p_n, S_n]) = \sum_i p_i U(S_i)$

MEU principle:

Choose the action that maximizes expected utility

Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities

E.g., a lookup table for perfect tictactoe

Determining utility values

Utilities map states to real numbers. Which numbers?

Standard approach to assessment of human utilities: compare a given state A to a standard lottery L_p that has "best possible prize" u_{\top} with probability p"worst possible catastrophe" u_{\perp} with probability (1-p)assume normalized utilities: $u_{\top} = 1.0$, $u_{\perp} = 0.0$ adjust lottery probability p until $A \sim L_p$ then p is the utility of A!

Note: behavior is **invariant** w.r.t. +ve linear transformation

 $U'(x) = k_1 U(x) + k_2$ where $k_1 > 0$

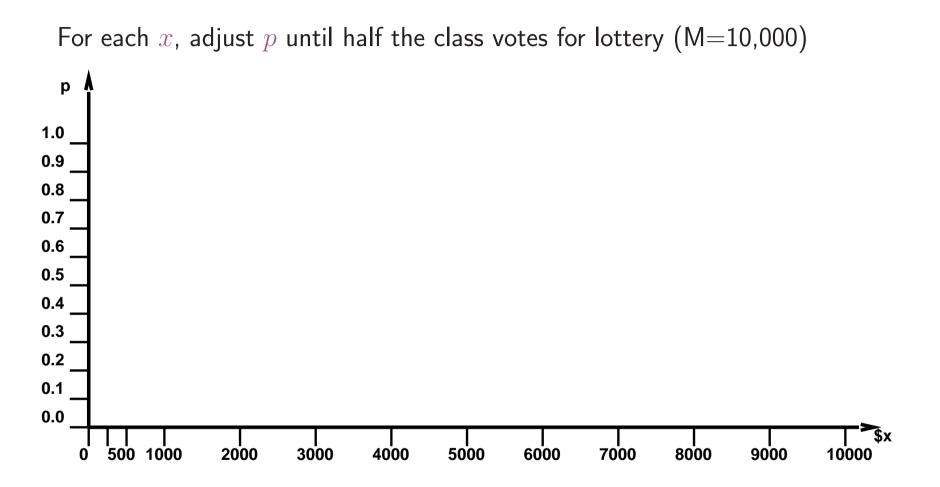
Money

Money does **not** behave as a utility function

Given a lottery L with expected monetary value EMV(L), usually U(L) < U(EMV(L)), i.e., people are risk-averse

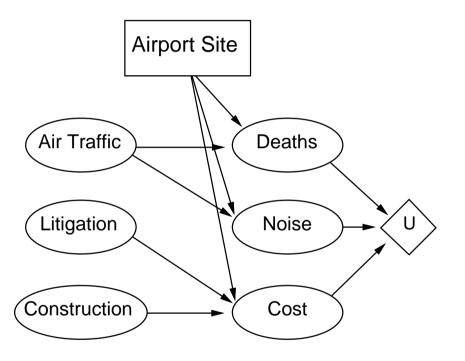
Utility curve: for what probability p am I indifferent between a prize x and a lottery [p, M; (1-p), 0] for large M?

Student group utility



Decision networks

Add action nodes and utility nodes to belief networks to enable rational decision making



Algorithm:

For each value of action node

compute expected value of utility node given action, evidence Return MEU action

Summary

Rational preferences give rise to utility function

Rational agent maximizes expected utility

Money does not behave as a utility function

Decision networks can be used to decide on actions