Rational DEcisions

Chapter 16
\diamond Rational preferences
\diamond Utilities
\diamond Money
\diamond Decision networks

In general, an agent may choose among prizes (A, B, etc.), where a certain outcome is guaranteed, and/or lotteries, where the outcome is not guaranteed

Lottery $L=[p, A ;(1-p), B]$

Notation:

$$
\begin{array}{ll}
A \succ B & A \text { preferred to } B \\
A \sim B & \text { indifference between } A \text { and } B \\
A \succsim B & B \text { not preferred to } A
\end{array}
$$

Idea: preferences of a rational agent must obey constraints.

Constraints:
Orderability

$$
(A \succ B) \vee(B \succ A) \vee(A \sim B)
$$

Transitivity

$$
(A \succ B) \wedge(B \succ C) \Rightarrow(A \succ C)
$$

Continuity

$$
A \succ B \succ C \Rightarrow \exists p[p, A ; 1-p, C] \sim B
$$

Substitutability

$$
A \sim B \Rightarrow[p, A ; 1-p, C] \sim[p, B ; 1-p, C]
$$

Monotonicity

$$
A \succ B \Rightarrow(p \geq q \Leftrightarrow[p, A ; 1-p, B] \succsim[q, A ; 1-q, B])
$$

Rational preferences contd.

Violating the constraints leads to self-evident irrationality
For example: an agent with intransitive preferences can be induced to give away all its money

If $B \succ C$, then an agent who has C would pay (say) 1 cent to get B

If $A \succ B$, then an agent who has B would pay (say) 1 cent to get A

If $C \succ A$, then an agent who has A
 would pay (say) 1 cent to get C

Maximizing expected utility

Theorem

Given preferences satisfying the constraints there exists a real-valued function U such that

$$
\begin{aligned}
& U(A) \geq U(B) \quad \Leftrightarrow \quad A \succsim B \\
& U\left(\left[p_{1}, S_{1} ; \ldots ; p_{n}, S_{n}\right]\right)=\sum_{i} p_{i} U\left(S_{i}\right)
\end{aligned}
$$

MEU principle:
Choose the action that maximizes expected utility
Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
E.g., a lookup table for perfect tictactoe

Determining utility values

Utilities map states to real numbers. Which numbers?
Standard approach to assessment of human utilities:
compare a given state A to a standard lottery L_{p} that has
"best possible prize" $u \top$ with probability p
"worst possible catastrophe" u_{\perp} with probability $(1-p)$
assume normalized utilities: $u_{\top}=1.0, u_{\perp}=0.0$
adjust lottery probability p until $A \sim L_{p}$ then p is the utility of A !

Note: behavior is invariant w.r.t. +ve linear transformation

$$
U^{\prime}(x)=k_{1} U(x)+k_{2} \quad \text { where } k_{1}>0
$$

\square
Money does not behave as a utility function
Given a lottery L with expected monetary value $E M V(L)$, usually $U(L)<U(E M V(L))$, i.e., people are risk-averse

Utility curve: for what probability p am I indifferent between a prize x and a lottery $[p, \$ M ;(1-p), \$ 0]$ for large M ?
\square
For each x, adjust p until half the class votes for lottery ($\mathrm{M}=10,000$)

\square
Add action nodes and utility nodes to belief networks
to enable rational decision making

\square
Rational preferences give rise to utility function
Rational agent maximizes expected utility
Money does not behave as a utility function
Decision networks can be used to decide on actions

