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Making decisions under uncertainty

Problem: choosing between actions with uncertain outcomes

Assumption: we have utility of each outcome + probability of each outcome

Rational choice: choose action that maximizes expected utility

Needed:

a) method for obtaining probabilities ⇒ probability theory
b) method for inferring utility values ⇒ utility theory

Maximum expected utility principle is part of decision theory:

Decision theory = utility theory + probability theory

We will look at probability theory first.
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Probability theory: Syntax

Basic element: random variable

Similar to propositional logic: possible worlds defined by assignment of values
to random variables.

Propositional or Boolean random variables
e.g., Cavity (do I have a cavity?)
Cavity = true is a proposition, also written cavity

Discrete random variables (finite or infinite)
e.g., Weather is one of 〈sunny, rain, cloudy, snow〉
Weather = rain is a proposition

Continuous random variables (bounded or unbounded)
e.g., Temp = 21.6; also allow, e.g., Temp < 22.0.

Elementary proposition formed by assigning value to random variable.

Complex propositions can be formed with standard logical connectives.
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Atomic event

Atomic event: A complete specification of the state of the world about which
we are uncertain.

E.g. if the world consists of only two Boolean variables Cavity and Toothache,
then there are four distinct atomic evens

Atomic events are mutually exclusive and exhaustive.
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Axioms of probability

For any propositions A, B:

0 ≤ P (A) ≤ 1

P (true) = 1 and P (false) = 0

P (A ∨ B) = P (A) + P (B) − P (A ∧ B)

>A     B

True

A B
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Prior probability

Prior or unconditional probabilities of propositions
e.g., P (Cavity = true) = 0.1 and P (Weather = sunny) = 0.72

correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:
P(Weather) = 〈0.72, 0.1, 0.08, 0.1〉 (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the
probability of every atomic event on those r.v.s

P(Weather, Cavity) = a 4 × 2 matrix of values:

Weather = sunny rain cloudy snow
Cavity = true 0.144 0.02 0.016 0.02
Cavity = false 0.576 0.08 0.064 0.08

Every question about a domain can be answered by the joint

distribution because every event is a sum of sample points
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Probability for continuous variables

Express distribution as a parameterized function of value:
P (X = x) = U [18, 26](x) = uniform density between 18 and 26

0.125

dx18 26

Here P is a density; integrates to 1.
P (X = 20.5) = 0.125 really means

lim
dx→0

P (20.5 ≤ X ≤ 20.5 + dx)/dx = 0.125
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Gaussian density

P (x) = 1√
2πσ

e−(x−µ)2/2σ2

0
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Conditional probability

Conditional or posterior probabilities
e.g., P (cavity|toothache) = 0.8
i.e., given that toothache is all I know

NOT “if toothache then 80% chance of cavity”

(Notation for conditional distributions:
P(Cavity|Toothache) = 2-element vector of 2-element vectors)

If we know more, e.g., cavity is also given, then we have
P (cavity|toothache, cavity) = 1

New evidence may be irrelevant, allowing simplification, e.g.,
P (cavity|toothache,CrusadersWin) = P (cavity|toothache) = 0.8
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Conditional probability

Definition of conditional probability:

P (a|b) =
P (a ∧ b)

P (b)
if P (b) 6= 0

Product rule gives an alternative formulation:
P (a ∧ b) = P (a|b)P (b) = P (b|a)P (a)

A general version holds for whole distributions, e.g.,
P(Weather, Cavity) = P(Weather|Cavity)P(Cavity)

(View as a 4 × 2 set of equations, not matrix mult.)

Chain rule is derived by successive application of product rule:
P(X1, . . . , Xn) = P(X1, . . . , Xn−1) P(Xn|X1, . . . , Xn−1)

= P(X1, . . . , Xn−2) P(Xn−1|X1, . . . , Xn−2) P(Xn|X1, . . . , Xn−1)
= . . .
= Πn

i = 1P(Xi|X1, . . . , Xi−1)
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Inference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the atomic events where it is true:
P (φ) = Σω:ω|=φP (ω)
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Inference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the atomic events where it is true:
P (φ) = Σω:ω|=φP (ω)

P (toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
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Inference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the atomic events where it is true:
P (φ) = Σω:ω|=φP (ω)

P (cavity∨toothache) = 0.108+0.012+0.072+0.008+0.016+0.064 = 0.28
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Inference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL

toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

Can also compute conditional probabilities:

P (¬cavity|toothache) =
P (¬cavity ∧ toothache)

P (toothache)

=
0.016 + 0.064

0.108 + 0.012 + 0.016 + 0.064
= 0.4
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Normalization and summing out

P (¬cavity|toothache) =
P (¬cavity ∧ toothache)

P (toothache)

=
P (¬cavity ∧ toothache)

P (¬cavity ∧ toothache) + P (cavity ∧ toothache)

Denominator can be viewed as a normalization constant.

In general, inference is done by summing out and then normalizing:

P(Cavity|toothache) = αP(Cavity, toothache)

= α [P(Cavity, toothache, catch) + P(Cavity, toothache,¬catch)]

= α [〈0.108, 0.016〉 + 〈0.012, 0.064〉]
= α 〈0.12, 0.08〉 = 〈0.6, 0.4〉

General idea: compute distribution on query variable
by fixing evidence variables and summing over hidden variables
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Inference by enumeration, contd.

Let X be all the variables. Typically, we want
the posterior joint distribution of the query variables Y

given specific values e for the evidence variables E

Let the hidden variables be H = X − Y − E

Then the required summation of joint entries is done by summing out the
hidden variables:

P(Y|E= e) = αP(Y,E= e) = αΣhP(Y,E= e,H =h)

The terms in the summation are joint entries because Y, E, and H together
exhaust the set of random variables

Obvious problems:
1) Worst-case time complexity O(dn) where d is the largest arity
2) Space complexity O(dn) to store the joint distribution
3) How to find the numbers for O(dn) entries???
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Independence

A and B are independent iff
P(A|B) =P(A) or P(B|A) =P(B) or P(A, B) =P(A)P(B)

Weather

Toothache Catch

Cavity decomposes into

Weather

Toothache Catch
Cavity

P(Toothache, Catch, Cavity,Weather)
= P(Toothache, Catch,Cavity)P(Weather)

32 entries reduced to 12; for n independent biased coins, 2n → n

Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables,
none of which are independent. What to do?
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Conditional independence

P(Toothache, Cavity, Catch) has 23 − 1 = 7 independent entries

If I have a cavity, the probability that the probe catches in it doesn’t depend
on whether I have a toothache:

(1) P (catch|toothache, cavity) = P (catch|cavity)

The same independence holds if I haven’t got a cavity:
(2) P (catch|toothache,¬cavity) = P (catch|¬cavity)

Catch is conditionally independent of Toothache given Cavity:
P(Catch|Toothache,Cavity) = P(Catch|Cavity)

Equivalent statements:
P(Toothache|Catch,Cavity) = P(Toothache|Cavity)
P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)
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Conditional independence contd.

Write out full joint distribution using chain rule:
P(Toothache, Catch, Cavity)
= P(Toothache|Catch,Cavity)P(Catch,Cavity)
= P(Toothache|Catch,Cavity)P(Catch|Cavity)P(Cavity)
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

I.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

In most cases, the use of conditional independence reduces the size of the
representation of the joint distribution from exponential in n to linear in n.

Conditional independence is our most basic and robust

form of knowledge about uncertain environments.
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Bayes’ Rule

Product rule P (a ∧ b) = P (a|b)P (b) = P (b|a)P (a)

⇒ Bayes’ rule P (a|b) =
P (b|a)P (a)

P (b)

or in distribution form

P(Y |X) =
P(X|Y )P(Y )

P(X)
= αP(X|Y )P(Y )

Useful for assessing diagnostic probability from causal probability:

P (Cause|Effect) =
P (Effect|Cause)P (Cause)

P (Effect)

E.g., let M be meningitis, S be stiff neck:

P (m|s) =
P (s|m)P (m)

P (s)
=

0.8 × 0.0001

0.1
= 0.0008

Note: posterior probability of meningitis still very small!
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Bayes’ Rule and conditional independence

P(Cavity|toothache ∧ catch)

= αP(toothache ∧ catch|Cavity)P(Cavity)

= αP(toothache|Cavity)P(catch|Cavity)P(Cavity)

This is an example of a naive Bayes model:

P(Cause,Effect1, . . . , Effectn) = P(Cause)ΠiP(Effecti|Cause)

Toothache

Cavity

Catch

Cause

Effect1 Effectn

Total number of parameters is linear in n
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Summary

Probability is a rigorous formalism for uncertain knowledge

Joint probability distribution specifies probability of every atomic event

Queries can be answered by summing over atomic events

For nontrivial domains, we must find a way to reduce the joint size

Independence and conditional independence provide the tools
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