Uncertainty

Chapter 13

Outline

\diamond Uncertainty
\diamond Probability
\diamond Syntax and Semantics
\diamond Inference
\diamond Independence and Bayes' Rule

Problem: choosing between actions with uncertain outcomes
Assumption: we have utility of each outcome + probability of each outcome
Rational choice: choose action that maximizes expected utility
Needed:
a) method for obtaining probabilities \Rightarrow probability theory
b) method for inferring utility values \Rightarrow utility theory

Maximum expected utility principle is part of decision theory:
Decision theory $=$ utility theory + probability theory
We will look at probability theory first.

Probability theory: Syntax

Basic element: random variable
Similar to propositional logic: possible worlds defined by assignment of values to random variables.

Propositional or Boolean random variables
e.g., Cavity (do I have a cavity?)

Cavity $=$ true is a proposition, also written cavity
Discrete random variables (finite or infinite)
e.g., Weather is one of 〈sunny, rain, cloudy, snow〉

Weather = rain is a proposition
Continuous random variables (bounded or unbounded) e.g., Temp $=21.6$; also allow, e.g., $T e m p<22.0$.

Elementary proposition formed by assigning value to random variable.
Complex propositions can be formed with standard logical connectives.

Atomic event

Atomic event: A complete specification of the state of the world about which we are uncertain.
E.g. if the world consists of only two Boolean variables Cavity and Toothache, then there are four distinct atomic evens

Atomic events are mutually exclusive and exhaustive.

For any propositions A, B :

$$
\begin{aligned}
& 0 \leq P(A) \leq 1 \\
& P(\text { true })=1 \text { and } P(\text { false })=0 \\
& P(A \vee B)=P(A)+P(B)-P(A \wedge B)
\end{aligned}
$$

True

Prior probability

Prior or unconditional probabilities of propositions
e.g., $P($ Cavity $=$ true $)=0.1$ and $P($ Weather $=$ sunny $)=0.72$
correspond to belief prior to arrival of any (new) evidence
Probability distribution gives values for all possible assignments:

$$
\mathbf{P}(\text { Weather })=\langle 0.72,0.1,0.08,0.1\rangle(\text { normalized, i.e., sums to } 1)
$$

Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s
$\mathrm{P}($ Weather, Cavity $)=\mathrm{a} 4 \times 2$ matrix of values:

$$
\begin{array}{l|lllll}
\quad \text { Weather }= & \text { sunny } & \text { rain cloudy } & \text { snow } \\
\hline \text { Cavity }=\text { true } & 0.144 & 0.02 & 0.016 & 0.02 \\
\text { Cavity }=\text { false } & 0.576 & 0.08 & 0.064 & 0.08
\end{array}
$$

Every question about a domain can be answered by the joint distribution because every event is a sum of sample points

Probability for continuous variables

Express distribution as a parameterized function of value: $P(X=x)=U[18,26](x)=$ uniform density between 18 and 26

Here P is a density; integrates to 1 .
$P(X=20.5)=0.125$ really means

$$
\lim _{d x \rightarrow 0} P(20.5 \leq X \leq 20.5+d x) / d x=0.125
$$

\square

$$
P(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

Conditional probability

Conditional or posterior probabilities
e.g., $P($ cavity \mid toothache $)=0.8$
i.e., given that toothache is all I know

NOT "if toothache then 80% chance of cavity"
(Notation for conditional distributions:
$\mathbf{P}($ Cavity \mid Toothache $)=$ 2-element vector of 2-element vectors $)$
If we know more, e.g., cavity is also given, then we have
$P($ cavity \mid toothache, cavity $)=1$

New evidence may be irrelevant, allowing simplification, e.g.,
$P($ cavity \mid toothache, CrusadersWin $)=P($ cavity \mid toothache $)=0.8$

Conditional probability

Definition of conditional probability:

$$
P(a \mid b)=\frac{P(a \wedge b)}{P(b)} \text { if } P(b) \neq 0
$$

Product rule gives an alternative formulation:

$$
P(a \wedge b)=P(a \mid b) P(b)=P(b \mid a) P(a)
$$

A general version holds for whole distributions, e.g., $\mathbf{P}($ Weather, Cavity $)=\mathbf{P}($ Weather \mid Cavity $) \mathbf{P}($ Cavity $)$
(View as a 4×2 set of equations, not matrix mult.)
Chain rule is derived by successive application of product rule:

$$
\begin{aligned}
& \mathbf{P}\left(X_{1}, \ldots, X_{n}\right)=\mathbf{P}\left(X_{1}, \ldots, X_{n-1}\right) \mathbf{P}\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
& \quad=\mathbf{P}\left(X_{1}, \ldots, X_{n-2}\right) \mathbf{P}\left(X_{n-1} \mid X_{1}, \ldots, X_{n-2}\right) \mathbf{P}\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
& \quad=\ldots \ldots \\
& \quad=\prod_{i=1}^{n} \mathbf{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

Start with the joint distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

For any proposition ϕ, sum the atomic events where it is true:

$$
P(\phi)=\sum_{\omega: \omega \models \phi} P(\omega)
$$

Start with the joint distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

For any proposition ϕ, sum the atomic events where it is true:
$P(\phi)=\sum_{\omega: \omega \models \phi} P(\omega)$
$P($ toothache $)=0.108+0.012+0.016+0.064=0.2$

Start with the joint distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

For any proposition ϕ, sum the atomic events where it is true:

$$
P(\phi)=\sum_{\omega: \omega \models \phi} P(\omega)
$$

$P($ cavity \vee toothache $)=0.108+0.012+0.072+0.008+0.016+0.064=0.28$

Start with the joint distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

$$
\begin{aligned}
P(\neg \text { cavity } \mid \text { toothache }) & =\frac{P(\neg \text { cavity } \wedge \text { toothache })}{P(\text { toothache })} \\
& =\frac{0.016+0.064}{0.108+0.012+0.016+0.064}=0.4
\end{aligned}
$$

Normalization and summing out

$$
\begin{aligned}
P(\neg \text { cavity } \mid \text { toothache }) & =\frac{P(\neg \text { cavity } \wedge \text { toothache })}{P(\text { toothache })} \\
& =\frac{P(\neg \text { cavity } \wedge \text { toothache })}{P(\neg \text { cavity } \wedge \text { toothache })+P(\text { cavity } \wedge \text { toothache })}
\end{aligned}
$$

Denominator can be viewed as a normalization constant.
In general, inference is done by summing out and then normalizing:

$$
\begin{aligned}
& \mathbf{P}(\text { Cavity } \mid \text { toothache })=\alpha \mathbf{P}(\text { Cavity }, \text { toothache }) \\
& =\alpha[\mathbf{P}(\text { Cavity, toothache, catch })+\mathbf{P}(\text { Cavity, toothache, } \neg \text { catch })] \\
& =\alpha[\langle 0.108,0.016\rangle+\langle 0.012,0.064\rangle] \\
& =\alpha\langle 0.12,0.08\rangle=\langle 0.6,0.4\rangle
\end{aligned}
$$

General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables

Let X be all the variables. Typically, we want the posterior joint distribution of the query variables Y given specific values e for the evidence variables E

Let the hidden variables be $\mathrm{H}=\mathrm{X}-\mathrm{Y}-\mathrm{E}$
Then the required summation of joint entries is done by summing out the hidden variables:

$$
\mathbf{P}(\mathbf{Y} \mid \mathbf{E}=\mathbf{e})=\alpha \mathbf{P}(\mathbf{Y}, \mathbf{E}=\mathbf{e})=\alpha \Sigma_{\mathbf{h}} \mathbf{P}(\mathbf{Y}, \mathbf{E}=\mathbf{e}, \mathbf{H}=\mathbf{h})
$$

The terms in the summation are joint entries because Y, E, and H together exhaust the set of random variables

Obvious problems:

1) Worst-case time complexity $O\left(d^{n}\right)$ where d is the largest arity
2) Space complexity $O\left(d^{n}\right)$ to store the joint distribution
3) How to find the numbers for $O\left(d^{n}\right)$ entries???

Independence

A and B are independent iff
$\mathbf{P}(A \mid B)=\mathbf{P}(A) \quad$ or $\quad \mathbf{P}(B \mid A)=\mathbf{P}(B) \quad$ or $\quad \mathbf{P}(A, B)=\mathbf{P}(A) \mathbf{P}(B)$

\mathbf{P} (Toothache, Catch, Cavity, Weather) $=\mathbf{P}($ Toothache, Catch, Cavity $) \mathbf{P}($ Weather $)$

32 entries reduced to 12 ; for n independent biased coins, $2^{n} \rightarrow n$
Absolute independence powerful but rare
Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Conditional independence

\mathbf{P} (Toothache, Cavity, Catch $)$ has $2^{3}-1=7$ independent entries
If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
(1) $P($ catch \mid toothache, cavity $)=P($ catch \mid cavity $)$

The same independence holds if I haven't got a cavity:
(2) $P($ catch \mid toothache, \neg cavity $)=P($ catch $\mid \neg$ cavity $)$

Catch is conditionally independent of Toothache given Cavity:
$\mathbf{P}($ Catch \mid Toothache, Cavity $)=\mathbf{P}($ Catch \mid Cavity $)$
Equivalent statements:
$\mathbf{P}($ Toothache \mid Catch, Cavity $)=\mathbf{P}($ Toothache \mid Cavity $)$
$\mathbf{P}($ Toothache, Catch \mid Cavity $)=\mathbf{P}($ Toothache \mid Cavity $) \mathbf{P}($ Catch \mid Cavity $)$

Conditional independence contd.

Write out full joint distribution using chain rule:

$$
\begin{aligned}
& \mathbf{P}(\text { Toothache }, \text { Catch, Cavity }) \\
& =\mathbf{P}(\text { Toothache } \mid \text { Catch, Cavity }) \mathbf{P}(\text { Catch, Cavity }) \\
& =\mathbf{P}(\text { Toothache } \mid \text { Catch, Cavity }) \mathbf{P}(\text { Catch } \mid \text { Cavity }) \mathbf{P}(\text { Cavity }) \\
& =\mathbf{P}(\text { Toothache } \mid \text { Cavity }) \mathbf{P}(\text { Catch } \mid \text { Cavity }) \mathbf{P}(\text { Cavity })
\end{aligned}
$$

I.e., $2+2+1=5$ independent numbers (equations 1 and 2 remove 2)

In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.

Conditional independence is our most basic and robust form of knowledge about uncertain environments.

Bayes' Rule

Product rule $P(a \wedge b)=P(a \mid b) P(b)=P(b \mid a) P(a)$

$$
\Rightarrow \text { Bayes' rule } P(a \mid b)=\frac{P(b \mid a) P(a)}{P(b)}
$$

or in distribution form

$$
\mathbf{P}(Y \mid X)=\frac{\mathbf{P}(X \mid Y) \mathbf{P}(Y)}{\mathbf{P}(X)}=\alpha \mathbf{P}(X \mid Y) \mathbf{P}(Y)
$$

Useful for assessing diagnostic probability from causal probability:

$$
P(\text { Cause } \mid E f f e c t)=\frac{P(\text { Effect } \mid \text { Cause }) P(\text { Cause })}{P(\text { Effect })}
$$

E.g., let M be meningitis, S be stiff neck:

$$
P(m \mid s)=\frac{P(s \mid m) P(m)}{P(s)}=\frac{0.8 \times 0.0001}{0.1}=0.0008
$$

Note: posterior probability of meningitis still very small!

Bayes' Rule and conditional independence

```
\(\mathbf{P}(\) Cavity \(\mid\) toothache \(\wedge\) catch \()\)
    \(=\alpha \mathbf{P}(\) toothache \(\wedge\) catch \(\mid\) Cavity \() \mathbf{P}(\) Cavity \()\)
    \(=\alpha \mathbf{P}(\) toothache \(\mid\) Cavity \() \mathbf{P}(\) catch \(\mid\) Cavity \() \mathbf{P}(\) Cavity \()\)
```

This is an example of a naive Bayes model:

$$
\mathbf{P}\left(\text { Cause }, E f f e c t_{1}, \ldots, E f f e c t_{n}\right)=\mathbf{P}\left(\text { Cause }^{2}\right) \Pi_{i} \mathbf{P}\left(\text { Effect }_{i} \mid \text { Cause }\right)
$$

Total number of parameters is linear in n
\square
Probability is a rigorous formalism for uncertain knowledge
Joint probability distribution specifies probability of every atomic event
Queries can be answered by summing over atomic events
For nontrivial domains, we must find a way to reduce the joint size
Independence and conditional independence provide the tools

