Solving problems by searching

- Problem formulation
- Example problems
- Searching for solutions
 - Breadth-first search
 - Depth-first search
 - Iterative deepening search
 - Bidirectional search
- Avoiding repeated states

1

Components of well-defined problems

- Initial state
- Available actions given by successor function
 - Initial state + successor function define state space
 - Path: sequence of states connected by actions
- Goal test (i.e. is current state a goal state?)
- Path costs (here, sum of step costs)

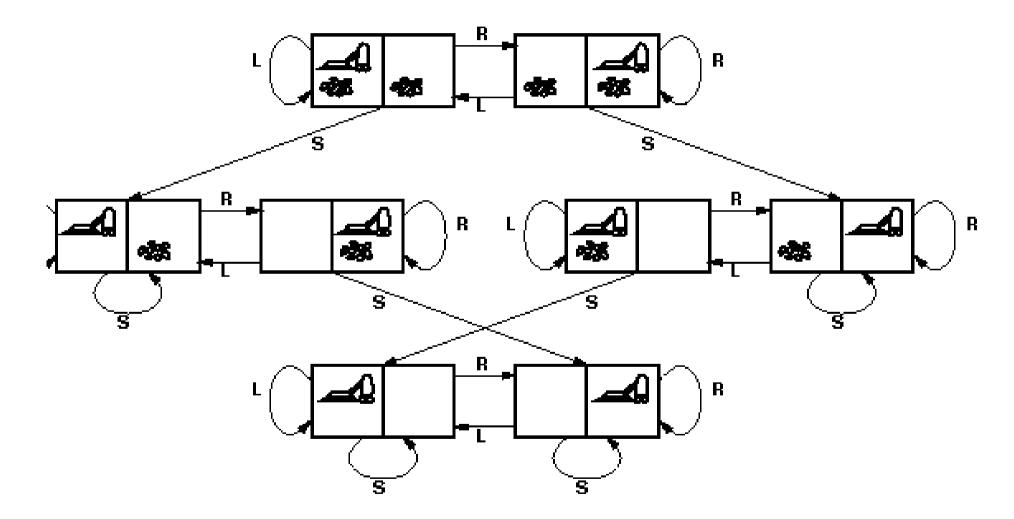
Solutions

- A **solution** to a problem is a path from the initial state to a goal state
- An **optimal solution** has the lowest path cost among all solutions
 - I.e. solution quality is measured by the path cost
- If path cost sum of step costs, and step costs equal, then optimum solution is shortest path

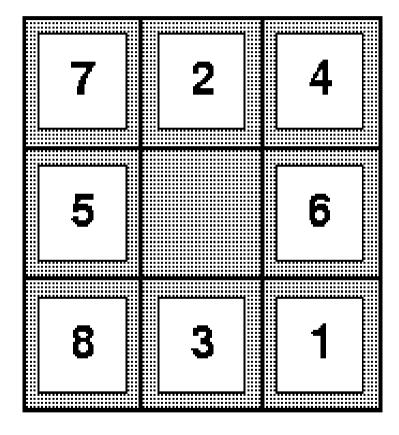
Example problem: vacuum world

- **States**: two locations, which (a) are dirty or not and (b) contain cleaning robot or don't (8 states)
- Initial state: any state
- Successor function: generates legal states that result from actions *Left*, *Right*, and *Suck*
- Goal test: checks whether all squares are clean
- **Path cost**: the same cost for each step (e.g. 1), so the path cost is the number of steps it contains

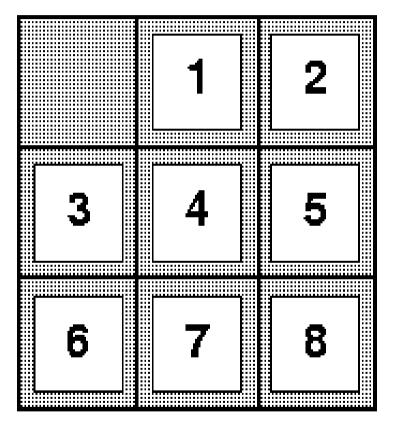
State space for vacuum world



Example problem: 8-puzzle



Start State



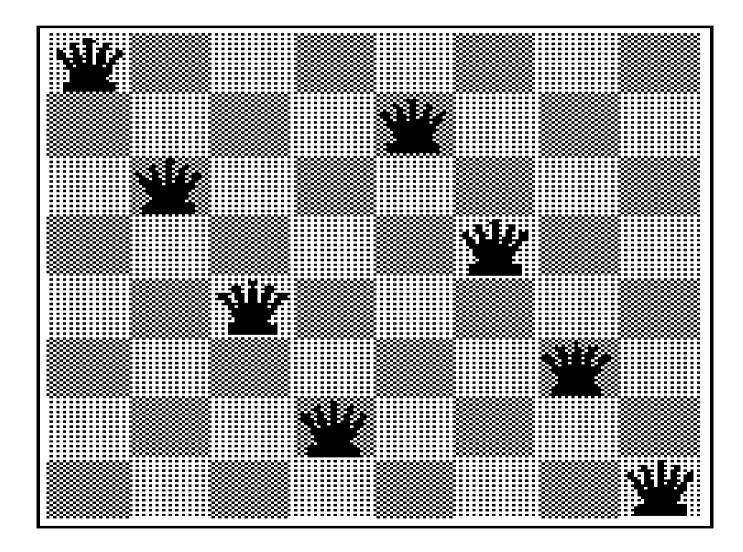
Goal State

6

Example problem: 8-puzzle

- States: specify location of each tile and the blank
- Initial state: any state
- Successor function: generates legal states that result from actions *Left*, *Right*, *Up* and *Down*
- **Goal test**: checks state matches goal configuration shown on previous slide
- **Path cost**: the same for each step (e.g. 1), so the path cost is the number of steps it contains

Example problem: 8-queens



8

Example problem: 8-queens

- States: any arrangement of 0 to 8 queens
- Initial state: no queens on the board
- **Successor function**: add queen to any empty position
- Goal test: 8 queens on the board, none attacked
- **Path cost**: path cost is of no interest because only the final state counts

Example problem: 8-queens

- Number of states in previous formulation: $64 \times 63 \times ... \times 57 \approx 3 \times 10^{14}$
- Better formulation:
 - States: *n* queens $(0 \le n \le 8)$, one per column in the leftmost *n* columns, with no queen attacking another
 - Successor function: add queen in any square in leftmost empty column such that it is not attacked
- Result: only 2,057 states!

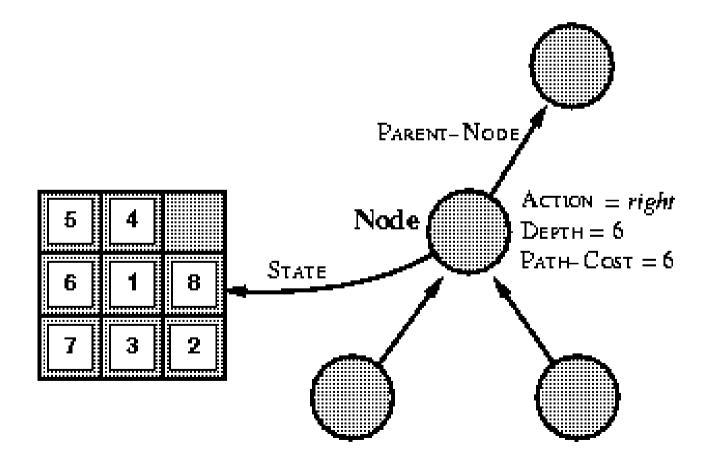
Tree-search algorithms

• Generate search tree by expanding search nodes according to a search strategy

function GENERAL-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
end

Implementation: nodes

• Node: data structure constituting part of a search tree



Implementation: general tree search

```
function TREE-SEARCH( problem, fringe) returns a solution, or failure
fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
```

if fringe is empty then return failure $node \leftarrow \text{REMOVE-FRONT}(fringe)$ if GOAL-TEST[problem] applied to STATE(node) succeeds return node $fringe \leftarrow \text{INSERTALL}(\text{EXPAND}(node, problem), fringe)$

```
function EXPAND( node, problem) returns a set of nodes

successors \leftarrow the empty set

for each action, result in SUCCESSOR-FN[problem](STATE[node]) do

s \leftarrow a new NODE

PARENT-NODE[s] \leftarrow node; ACTION[s] \leftarrow action; STATE[s] \leftarrow result

PATH-COST[s] \leftarrow PATH-COST[node] + STEP-COST(node, action, s)

DEPTH[s] \leftarrow DEPTH[node] + 1

add s to successors

return successors
```

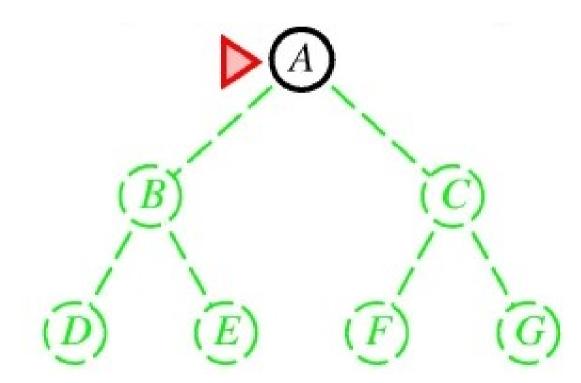
Search strategy (determines order of node expansion)

- Properties of search strategies:
 - **Completeness**: does it find a solution if one exists?
 - Time complexity: how long does it take?
 - **Space complexity**: how much memory does it take?
 - **Optimality**: does it find the optimal solution?
- Complexity is measured in terms of
 - branching factor b
 - depth of shallowest goal node d
 - maximum length of any path *m*

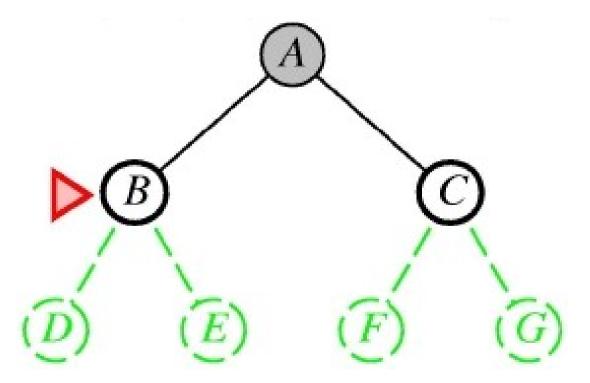
Uninformed search strategies

- Can only use the information available in the problem definition (also called **blind search**)
- Popular algorithms:
 - Breadth-first search
 - Depth-first search
 - Iterative deepening search
 - Bidirectional search

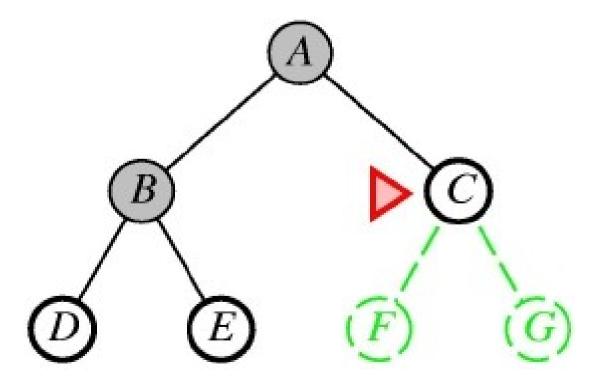
- Expand shallowest unexpanded node
- *fringe* is a FIFO queue, i.e. new nodes go at end



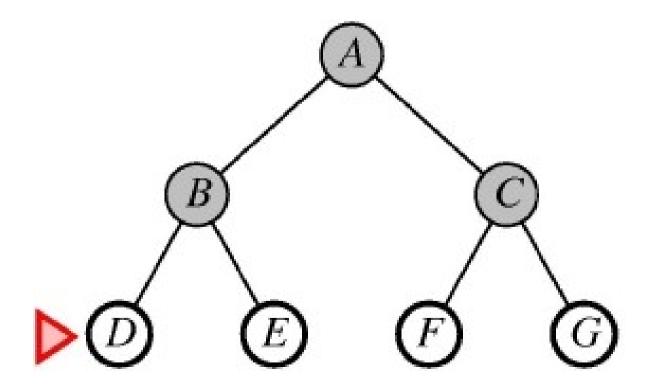
- Expand shallowest unexpanded node
- *fringe* is a FIFO queue, i.e. new nodes go at end



- Expand shallowest unexpanded node
- *fringe* is a FIFO queue, i.e. new nodes go at end



- Expand shallowest unexpanded node
- *fringe* is a FIFO queue, i.e. new nodes go at end



- Complete?
- Time?
- Space?
- Optimal?

- Complete?
 - Yes! (if *b* is finite)
- Time?
- Space?
- Optimal?

- Complete?
 - Yes! (if *b* is finite)
- Time? (assuming solution is at level *d*)

 $-b + b^2 + b^3 + \dots + b^d + b(b^d - 1) = O(b^{d+1})$

- Space?
- Optimal?

- Complete?
 - Yes! (if *b* is finite)
- Time? (assuming solution is at level *d*)

 $-b + b^2 + b^3 + \dots + b^d + b(b^d - 1) = O(b^{d+1})$

• Space?

- O(b^{d+1}) (node either fringe node or ancestor of one)
• Optimal?

- Complete?
 - Yes! (if *b* is finite)
- Time? (assuming solution is at level *d*)

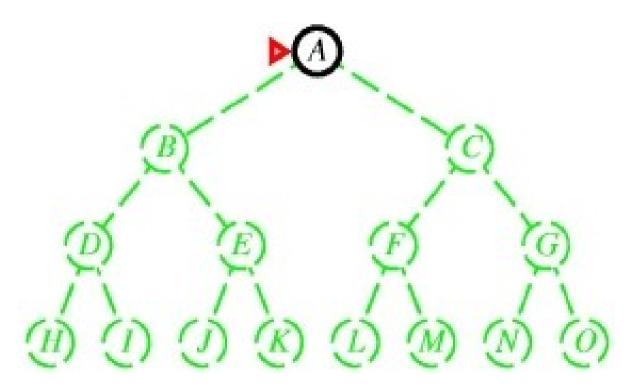
 $-b + b^2 + b^3 + \dots + b^d + b(b^d - 1) = O(b^{d+1})$

- Space?
 - $O(b^{d+1})$ (node either fringe node or ancestor of one)
- Optimal?
 - Only if all step costs are equal

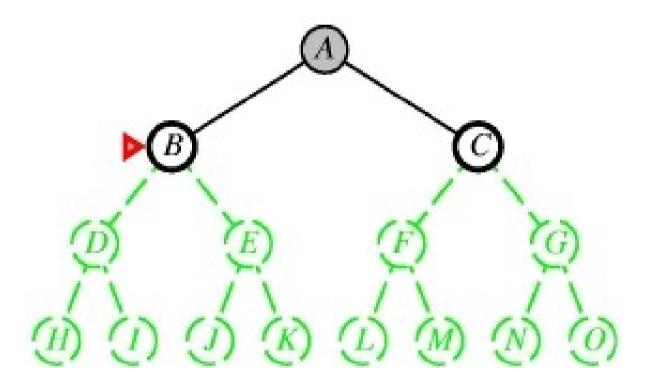
Uniform-cost search

- Expand unexpanded node with lowest path cost
- *fringe* is queue ordered by path costs
- Complete? Yes, if step costs $\geq \epsilon$
- Time? #nodes with path cost \leq cost of optimal solution $C \Rightarrow O(b^{\lceil C/\epsilon \rceil})$
- Space? Same
- Optimal? Yes

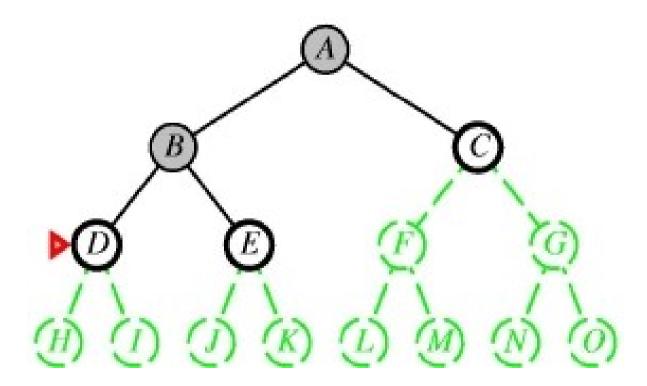
- Expand deepest unexpanded node
- *fringe* is a LIFO queue, i.e. new nodes go at front



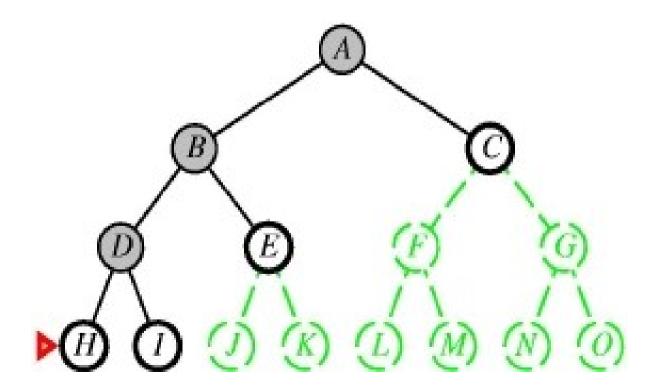
- Expand deepest unexpanded node
- *fringe* is a LIFO queue, i.e. new nodes go at front



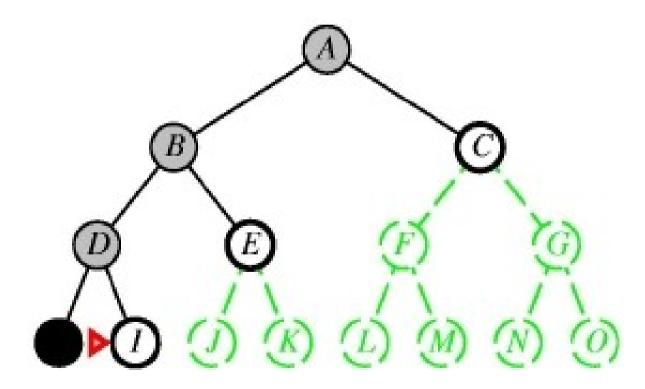
- Expand deepest unexpanded node
- *fringe* is a LIFO queue, i.e. new nodes go at front



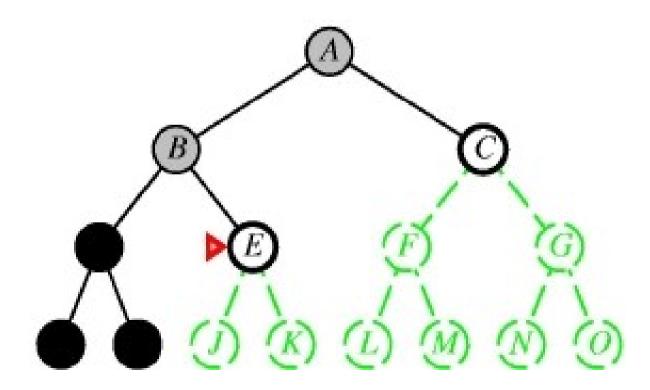
- Expand deepest unexpanded node
- *fringe* is a LIFO queue, i.e. new nodes go at front



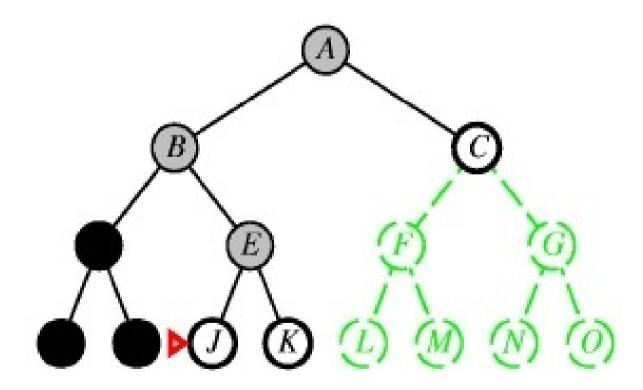
- Expand deepest unexpanded node
- *fringe* is a LIFO queue, i.e. new nodes go at front



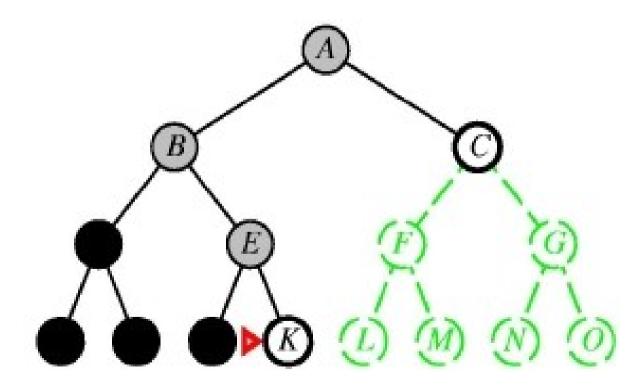
- Expand deepest unexpanded node
- *fringe* is a LIFO queue, i.e. new nodes go at front



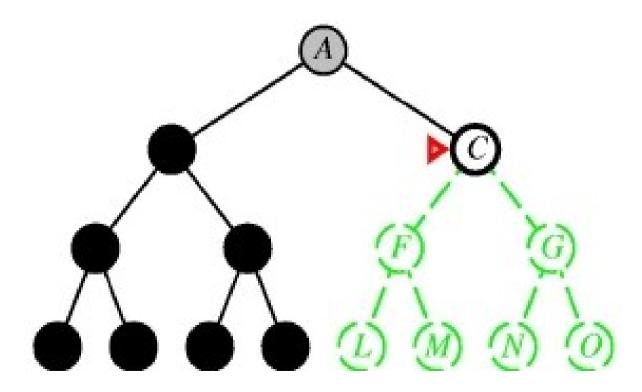
- Expand deepest unexpanded node
- *fringe* is a LIFO queue, i.e. new nodes go at front



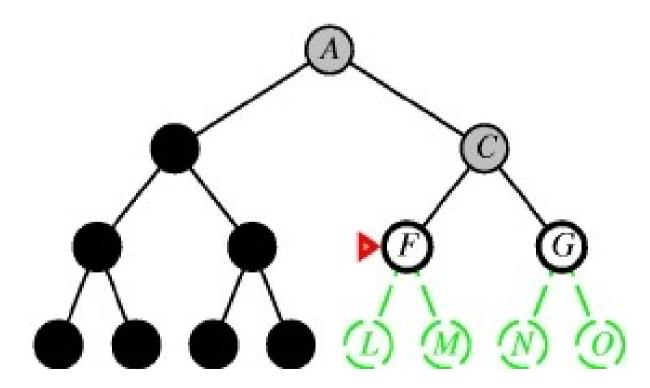
- Expand deepest unexpanded node
- *fringe* is a LIFO queue, i.e. new nodes go at front



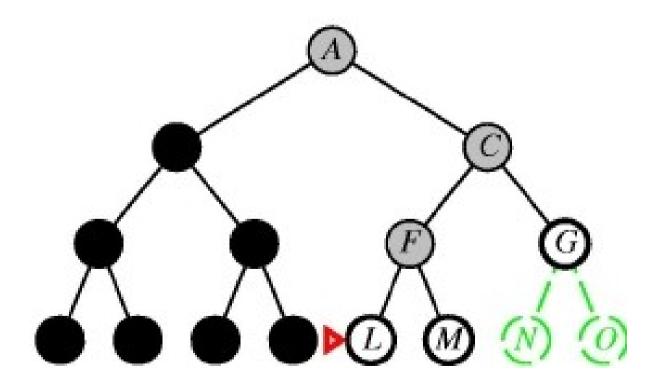
- Expand deepest unexpanded node
- *fringe* is a LIFO queue, i.e. new nodes go at front



- Expand deepest unexpanded node
- *fringe* is a LIFO queue, i.e. new nodes go at front

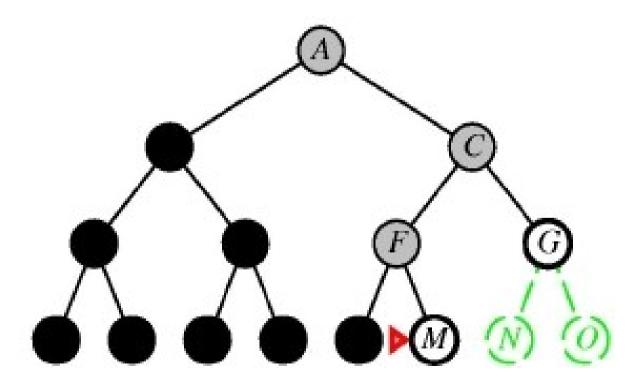


- Expand deepest unexpanded node
- *fringe* is a LIFO queue, i.e. new nodes go at front



Depth-first search

- Expand deepest unexpanded node
- *fringe* is a LIFO queue, i.e. new nodes go at front



- Complete?
- Time?
- Space?
- Optimal?

• Complete?

- No, fails in infinite spaces, spaces with loops

- Time?
- Space?
- Optimal?

- Complete?
 - No, fails in infinite spaces, spaces with loops
- Time?
 - $O(b^m)$: terrible if *m* is much larger than *d*
- Space?
- Optimal?

- Complete?
 - No, fails in infinite spaces, spaces with loops
- Time?
 - $O(b^m)$: terrible if *m* is much larger than *d*
- Space?
 - O(bm) (single path and unexpanded siblings)
- Optimal?
 - No

Depth-limited search

• Depth-first search with depth limit

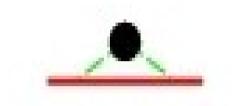
function DEPTH-LIMITED-SEARCH(problem, limit) returns soln/fail/cutoff RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns soln/fail/cutoff cutoff-occurred? \leftarrow false if GOAL-TEST[problem](STATE[node]) then return node else if DEPTH[node] = limit then return cutoff else for each successor in EXPAND(node, problem) do $result \leftarrow RECURSIVE-DLS(successor, problem, limit)$ if result = cutoff then cutoff-occurred? \leftarrow true else if $result \neq failure$ then return resultif cutoff-occurred? then return cutoff else return failure

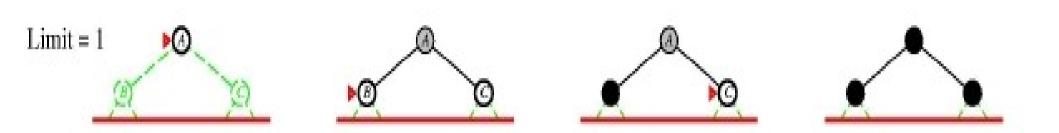
Iterative deepening search

```
function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution
inputs: problem, a problem
for depth \leftarrow 0 to \infty do
result \leftarrow DEPTH-LIMITED-SEARCH(problem, depth)
if result \neq cutoff then return result
end
```

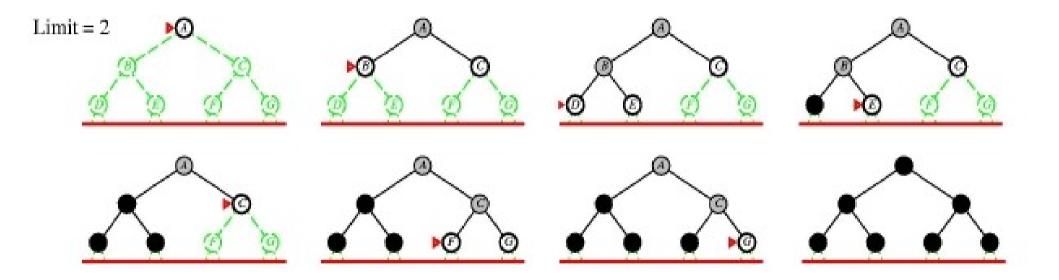
Iterative deepening search (l = 0)



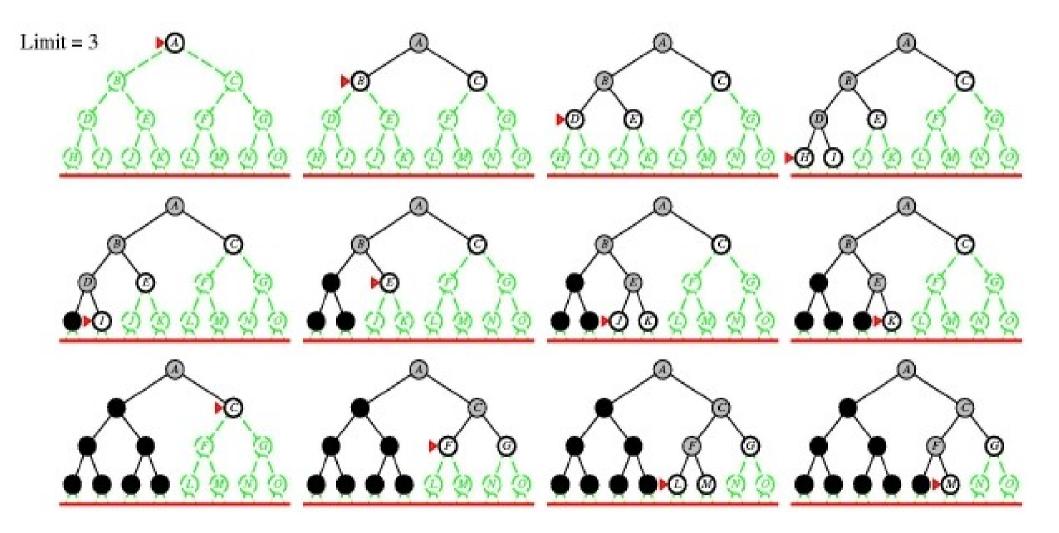
Iterative deepening search (l = 1)



Iterative deepening search (l = 2)



Iterative deepening search (l = 3)



Based on "Artificial Intelligence: A Modern Approach" © Stuart Russell and Peter Norvig, 2nd ed., 2003 47

- Complete?
- Time?
- Space?
- Optimal?

- Complete?
 - Yes, if b is finite
- Time?
- Space?
- Optimal?

- Complete?
 - Yes, if b is finite
- Time?
 - $-db^{1} + (d 1)b^{2} + \dots + b^{d} = O(b^{d})$
- Space?
- Optimal?

- Complete?
 - Yes, if b is finite
- Time?

$$- db^{1} + (d - 1)b^{2} + \dots + b^{d} = O(b^{d})$$

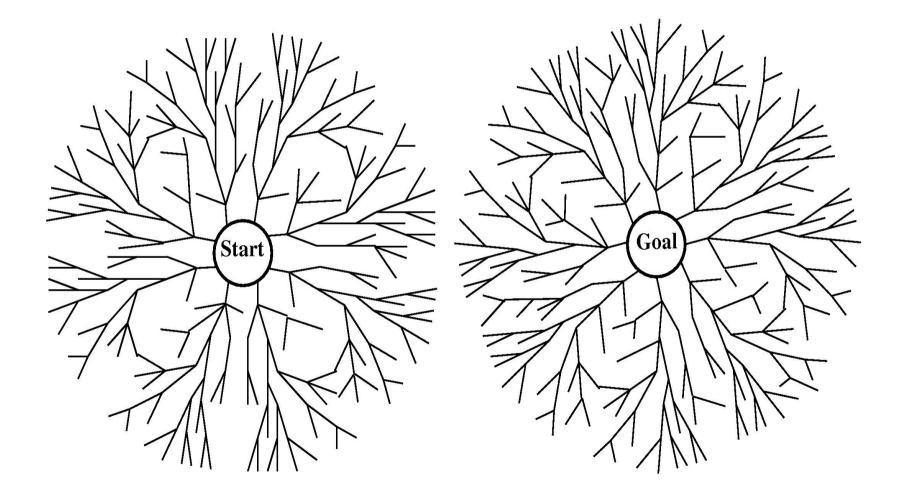
- Space?
 - O(bd)
- Optimal?

- Complete?
 - Yes, if b is finite
- Time?

$$-db^{1} + (d - 1)b^{2} + \dots + b^{d} = O(b^{d})$$

- Space?
 - O(bd)
- Optimal?
 - Yes, if step cost are all identical

Bidirectional search

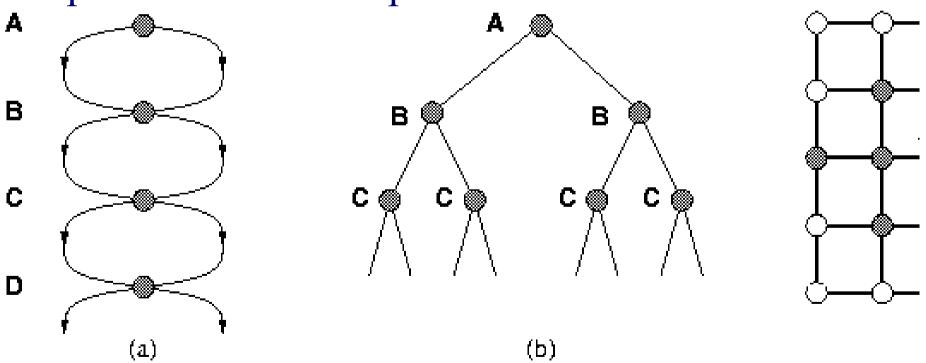


Properties of bidirectional search based on breadth-first search

- Complete?
 - Yes, if b is finite
- Time?
 - $O(b^{d/2})$
- Space?
 - $O(b^{d/2})$
- Optimal?
 - Yes, if step costs are all identical

Repeated states

• Failure to detect repeated states can turn a linear problem into an exponential one



Graph search

```
function GRAPH-SEARCH (problem, fringe) returns a solution, or failure
   closed \leftarrow an empty set
   fringe \leftarrow \text{INSERT}(\text{MAKE-NODE}(\text{INITIAL-STATE}[problem]), fringe)
   loop do
        if fringe is empty then return failure
        node \leftarrow \text{REMOVE-FRONT}(fringe)
        if GOAL-TEST[problem](STATE[node]) then return node
        if STATE [node] is not in closed then
             add STATE node to closed
             fringe \leftarrow \text{INSERTALL}(\text{EXPAND}(node, problem), fringe)
   end
```