
COMP340-08B Lecture Notes

David Goodwin

September 20, 2008

2

This document was produced using LATEX and typeset with TEX. Fonts are
by METAFONT and AMS-LATEX.

All complaints, comments, corrections and suggestions to David Goodwin
(Email: dgsoftnz@gmail.com).

Contents

1 Introduction 5
1.1 Advantages of Formal Methods 5
1.2 State Vector . 5
1.3 Most basic code . 6
1.4 Examples . 6

1.4.1 Example 1 . 6
1.4.2 Example 2 . 6

2 Pieces of Code 7
2.1 Assignment . 7
2.2 Concatentation . 7
2.3 If-then-else . 7
2.4 While . 7

2.4.1 Example . 8
2.5 Code . 8

2.5.1 Example One . 8
2.5.2 Example Two . 8

3 Floyd-Hoare Logic 11
3.1 Hoare Tripple . 11

3.1.1 Example One . 11
3.1.2 Example Two . 11
3.1.3 Example Three . 11

3.2 Assignment Rule . 12
3.2.1 Example One . 12
3.2.2 Example Two . 12
3.2.3 Proofs . 12

3.3 Weakening Rule . 12
3.3.1 Rule . 13
3.3.2 Example . 13

3.4 Concatenation (Composition) Rule 13
3.4.1 Proof of Soundness . 13
3.4.2 Example . 13

3.5 If-rules . 14
3.6 While Rule . 14

A Lecture Date Map 15

3

4 CONTENTS

B Lecture Start Notes 17
B.1 9 September 2008 . 17
B.2 10 September 2008 . 17

B.2.1 Revision . 17
B.3 11 September 2008 . 17
B.4 16 September 2008 . 18
B.5 17 September 2008 . 18
B.6 18 September 2008 . 18

C Rigorous Proof of Assignment Rule 19
C.1 Proof One . 19
C.2 Proof Two . 19

Chapter 1

Introduction

1.1 Advantages of Formal Methods

1. Reduces the need for debugging

2. Forces a clear formulation of program objectives

3. Makes reusing software easier

4. Commercial imperatives

The subset of our analysis are Pieces of Code - a self contained program (here
written as pseudo-code), which acts as a function on its inputs. We assume this
pseudo-code is made up of:

1. Usual arithmetic operators and library functions (eg +, ∗, etc)

2. if-then and if-then-else constructs

3. The while construct

Note:

• No type declarations (use context)

• No input/output statements

1.2 State Vector

We assume a piece of code acts on a finite set of variables x1, x2, ..., xn (which
may be numeric, Boolean, etc). We call (x1, x2, ..., xn) the Program State: it
is transformed (many times usually) as the program runs. The xi represent all
variables used in the program.

Suppose xi takes values from the dataset Xi, so the state is a “vector” in
X1 x X2 x ... Xn.

5

6 CHAPTER 1. INTRODUCTION

1.3 Most basic code

The most basic piece of code is an assignment, eg x := 3. For this “atomic
program”, th state space as only one component, X (= N say). All inputs give
output.

1.4 Examples

1.4.1 Example 1

y := x

Here the state space might be NxNIf the input state vector is (x, y) = (2, 3),
then the output vector is (2, 2).

To build up more complicated programs we need to use conditions or tests.
These are predicates on the state space (assumed to be of some easily computed
form).

1.4.2 Example 2

The test (x < y) on the state space NxNgives the answer true if (x, y) = (2, 3)
and false if (x, y) = (4, 4), etc. We assume such tests are part of the language
for building programs. Being predicates, all the usual logical connectives can
be applied to them.

Chapter 2

Pieces of Code

Fix the state space X = X1 x X2 x ... Xn. Then we can recursively define more
complex programs as follows:

2.1 Assignment

As we have seen, assignment statements are pieces of code.

2.2 Concatentation

If P1 and P2 are two pieces of code, so is P1;P2, the concatentation (composition)
of P1 with P2. This is “first P1, then P2”, which obviously corresponds to the
composition of functions.

2.3 If-then-else

If P1 and P2 are two pieces of code, and γ is a test on their state space, then

if(α) then {P1} else P2

this is a piece of code.

2.4 While

if α is a test and P a piece of code (both on X), then while(α) {P} is a piece
of code. We call P the “body of the loop”. Given input state x, the output is
obtained by applying P until α is no longer satisfied, the answer is the value of
x at the point where this occurs (which may be immediately!)

Note: while(α) {P} may not terminate for some input states: The “exit
condition” ¬α may never be achieved

7

8 CHAPTER 2. PIECES OF CODE

2.4.1 Example

Let P = “while(x ≥ 1) {x := x+ 1}”. If the input is x ≥ 1 then x is increased
each time the body of the loop is applied so the exit condition ¬(x ≥ 1)⇔ (x <
1) is never satisfied. For example, if x = 1 initially, then the vector (1) evolves
as follows:

(1), (2), (3), (4), ...

and does not stop. So P is not defined when x ≥ 1. For x < 1, the entry
condition is never satisfied so the output is x: (x), (x)

2.5 Code

Generally, we must think of pieces of code only as partial functions X → X,
whose domains generally can’t be determined (by the Halting Problem).

2.5.1 Example One

let X1 = X2 = X3 = {0, 1}∗ (all binary strings (*)). Let P = “h := a; a :=
b; b := h”. The state vector generally is (h, a, b) ∈ X = x1 x x2 x x3 Supose
input vector is x = (110, 01, 1001).

before: code: after:
(110, 01, 1001) h := a (01, 01, 1001)
(01, 01, 1001) a := b (01, 1001, 1001)
(01, 1001, 1001) b := h (01, 1001, 01)

Generally, if the input vector is (p, q, r), then the output is determined via:
(p, q, r) 7→ (q, q, r) 7→ (q, r, r) 7→ (q, r, q) so the second and third positions are
swapped, and the value originally in the first position is lost.

2.5.2 Example Two

Suppose code is:

p:=1;i:=1
while(i =< n)

{p:=p*i;
i:=i+1}

Suppose the state space is NxNxN, with (p, i, n) a typical state. If input is
(p0, i0, 4), where p0, i0 are any “default values”, we get:

(p0, i0, 4) 7→ (1, i0, 4) 7→ (1, 1, 4) (2.1)
7→ (1, 1, 4) 7→ (2, 2, 4) (2.2)
7→ (1, 2, 4) 7→ (2, 3, 4) (2.3)
7→ (6, 3, 4) 7→ (6, 4, 4) (2.4)
7→ (24, 4, 4) 7→ (24, 5, 4) (2.5)

where 2.1 is after two assignments, 2.2 is after one loop, 2.3 is after two loops,
2.4 is after three loops and 2.5 is the output state after the exit condition is
satisfied.

2.5. CODE 9

This piece of code seems to compute p = n!. How to proive this? How to
assert it even?

10 CHAPTER 2. PIECES OF CODE

Chapter 3

Floyd-Hoare Logic

3.1 Hoare Tripple

A Hoare tripple is a statement 〈α〉 P 〈β〉 where α, β are tests on the state space
X and P a program (= piece of code) acting on X. We say the tripple is
partially correct if, whenever x ∈ Xsatisfiesα, and P is applied to x, the result
(if it exists) satisfies β. It is totally correct if any input x satisfying α does give
a result when P is applied (P terminates on x), and this result satisfies β.

Recalling the factorial program P , it appears that 〈n ≥ 1〉 P 〈P = n!〉
is both partially and totally correct. Note taht neither (n ≥ 1) nor (p = n!)
involves the varible “i”, so its value is not relevant to the correctness.

We call the α, β in 〈α〉 P 〈β〉 the precondition and postcondition respectively.

3.1.1 Example One

if X = RxR, the tripple 〈y 6= 0〉 x := 1/y 〈x = 1/y〉 is totally correct where
(x, y) ∈ RxR.

3.1.2 Example Two

〈 〉 a := b 〈a = b〉 is totally correct for any choice of state space X1xX1. Here
〈 〉 is called the empty precondition, equivalent to 〈true〉 - it is always satisfied.

3.1.3 Example Three

Pick X = Z, the integers.

〈 〉 while(P ≥ 1){P := P + 1 〈P < 1〉

is partially correct (as if P < 1, the entry condition is not satisfied and if P ≥ 1
it does not terminate). But

〈P < 1〉 while(P ≥ 1){P := P + 1 〈P < 1〉

is totally correct.

11

12 CHAPTER 3. FLOYD-HOARE LOGIC

3.2 Assignment Rule

The basis of all correctness proofs is provided by the Assignment Rule, which
states that the following Hoare tripple is (totally) correct:

〈α[E/x]〉 x := E 〈α〉

Here E is some value, easily computed from the current state variables, either
using library functions, or maybe E is a variable or a constant. x is a state
variable name, and α[E/x] is the predicate α with x replaced by E where-ever
it occurs.

This rule is sound (i.e. does give correct tripples) because if the output to
x := E is to satisfy α it is enough that E satisfies the same condition x had to
satisfy according to α.

It is also complete (i.e. the precondition is as weak (= general) as possible),
so α[E/x] is the weakest possible precondition given the piece of code x := E
and postcondition 〈α〉.

3.2.1 Example One

〈 〉 x := 2 ∗ y 〈x = 2y〉

(where x = RxR) is totally correct, since if we replace x by E = 2y in α =
“(x = 2y)′′ gives “(2y = 2y)” which is just True

3.2.2 Example Two

〈x ≤ 0〉 x := −x 〈x ≥ 0〉

is correct, since replacing x by E = −x in (x ≥ 0) gives (−x ≥ 0) which is
logically equivalent to (x ≤ 0)

3.2.3 Proofs

See Appendix C for two proofs of the Assignment Rule.

3.3 Weakening Rule

(Precondition strengthening, postcondition weakening)
Suppose 〈α〉 P 〈β〉 is partially correct. Suppose α1 → α is True (if α1

evaluates to True at x, so does α), and suppose β → β is True . So α1 is
stronger (or as strong as) α, and β is stronger than (or as strong as) β1. Then
also 〈α1〉 P 〈β1〉 is partially correct.

Proof. Suppose 〈α〉 P 〈β〉 is partially correct and α1 → α and β → β1 are both
tautologies. Suppose input x satisfies α1. Then x satisfies α. So when the code
P is applied to x, any output satisfies β (since 〈α〉 P 〈β〉 is partially correct).
So any such output satisfies β1 (since β → β1 is a tautology). So by definition
〈α〉 P 〈β1〉 is partially corect.

3.4. CONCATENATION (COMPOSITION) RULE 13

3.3.1 Rule

The weakening rule can be stated as follows:

α1 → α, β → β1, 〈α〉 P 〈β〉
〈α1〉 P 〈β1〉

(3.1)

3.3.2 Example

The trippe 〈 〉 y := x2 〈y ≥ 0〉 is correct by the Assignment Rule (if state
space is RxR), since we get weakest precondition 〈x2 ≥ 0〉 (=) 〈 〉. Hence so is
〈x > −10〉 y := x2 〈y ≥ −5〉.

Proof

(x > −10)→ True , (y ≥ 0)→ (y ≥ −5)

is True , so we use weakening:

(x > −10)→ true, (y ≥ 0)→ (y ≥ −5), 〈 〉 y := x2 〈y ≥ 0〉
〈x > −10〉 y := x2 〈y ≥ −5〉

3.4 Concatenation (Composition) Rule

The rule looks like this:

〈α〉 P 〈β〉, 〈β〉 Q 〈γ〉
〈α〉 P ;Q 〈γ〉

(3.2)

3.4.1 Proof of Soundness

Assume the hypothesis (are partially correct tripples). Suppose input x satisfies
α. Apply P to it, then Q. Then after applying P to x, any result satisfies β.
So wehn Q is applied to that, the result (if any) satisfies γ (by the correctness
of 〈β〉 Q 〈γ〉). So by definition, 〈α〉 P ;Q 〈γ〉 is partially correct.

3.4.2 Example

Prove the following is correct:

〈 〉 c := a+ b; c := c/2 〈c = (1 + b)/2〉

(assume a, b, c are Real-valued)

Proof. Work backwards: “feed” the postcondition back through the code. Thus,
by assignment rule,

〈c = a+ b〉(=)〈c/2 = (a+ b)/2〉 c := c/2 〈c = (a+ b)/2〉

But so is:
〈 〉 ⇔ 〈a+ b = a+ b〉 c := a+ b 〈c = a+ b〉

14 CHAPTER 3. FLOYD-HOARE LOGIC

by Assignment. We can now use the Concatenation Rule:

〈 〉 c := a+ b 〈c = a+ b〉, 〈c = a+ b〉 c := c/2 〈c = a+b
2 〉

〈 〉 c := a+ b; c := c/2 〈c = a+b
2 〉

Typically we would set out such a proof “Vertically”:

〈a+ b = a+ b〉 ⇔ 〈 〉
c := a+ b;

〈c/2 =
a+ b

2
〉 ⇔ 〈c = a+ b〉

c := c/2

〈c =
a+ b

2
〉

The method easily extends to arbitrary long concatenations.

3.5 If-rules

3.6 While Rule

Appendix A

Lecture Date Map

This document is a collection notes sorted by topic. This appendix covers which
bits of the notes came from which lectures

Date Content
9 September 2008 chapter 1, The intro to chapter 2 and its sections 2.1, 2.2, 2.3
10 September 2008 Sections 2.4 and 2.5 in chapter 2
11 September 2008 Sections 3.1 and 3.2 in Chapter 3.
16 September 2008 Sections 3.3 and 3.4 in Chapter 3, Appendix C
17 September 2008 Section 3.5 of Chapter 3.
18 September 2008 Section 3.6 of Chapter 3.

15

16 APPENDIX A. LECTURE DATE MAP

Appendix B

Lecture Start Notes

Notes, announcements and revision content from the beginning of the lectures is
not included inline with the notes. It is instead recorded here when present. In
the original paper notes, the appropriate section here would come first followed
by the content specified in appendix A for the specific date.

B.1 9 September 2008

• Assignments are to be handed in on the third floor of G block under the
Mathematics reception counter

• Chapters 4.1, 4.2 and 4.3 of the text book will be covered

• The rest of the paper will cover logical & algebraic methods for reasoning
about (the correctness of) programs

B.2 10 September 2008

B.2.1 Revision

if(α) then {P1} else {P2}

is a piece of code. It acts as expected on the state x: if α is true at x then the
output agrees with that of P1, otherwise it agrees with P2’s.

Also used is if-then without “else”: if(α) then {P1} is a piece of code which,
if the input x satisfies α, gives the same output as P1, otherwise the output is
x itself.

Note: the underlining in x means its a vector

B.3 11 September 2008

The tutorial is now in K.G.06.

17

18 APPENDIX B. LECTURE START NOTES

B.4 16 September 2008

A copy of two hand-written rigorous proofs of the Assignment Rule were handed
out. See Appendix C sections C.1 and C.2.

B.5 17 September 2008

No pre-content notes were recorded for this lecture.

B.6 18 September 2008

No pre-content notes were recorded for this lecture.

Appendix C

Rigorous Proof of
Assignment Rule

Note: This was copied from a photocopy of handwritten text. Difficulties in
reading such text can result in copy errors.

C.1 Proof One

Proof.
〈α[E/x]〉 x := E 〈α〉 (C.1)

Say state variables are x1, x2, . . . , xn, xi ∈ Xi (without loss of generality).
Now suppose assignment is x1 := E(x1, x2, . . . , xn) (wlog). Let:

β(x1, . . . , xn) = α[E(x1, . . . , xn), x2, . . . , xn]
= α[E/x1]

another predicate.
Suppose an input state vector (a1, a2, . . . , an) satisfies β, so α(E(a1, a2, . . . , an), a2, . . . , an)

satisfies β, so α(E(a1, a2, . . . , an), a2, . . . , an) is True . Now set b1 = E(a1, a2, . . . , an),
so output vector is (E(a1, a2, . . . , an), a2, . . . , an). Then α(b1, a2, . . . , an) =
β(a1, a2, . . . , an) is True . So this shows equation C.1 is correct.

Is β = α[E/x1] as general as possible? Need to show any input to the
assignment that satisfies the postcondition must also satisfiy the precondition.
Put another way, we need to show that if the precondition β is not satisfied,
nor can the postcondition be.

So say β(a1, a− 2, . . . , an) = α(E(a1, a2, . . . , an), a2, . . . , an) is False . Then
letting b1 = E(a1, a2, . . . , an), the output of the assignment given input (a1, a2, . . . , an)
is (b1, a2, . . . , an), and of course α(b1, a2, . . . , an) = β(a1, a2, . . . , an), which is
False .

C.2 Proof Two

Proof.
〈α[E/x]〉 x := E 〈α〉

19

20 APPENDIX C. RIGOROUS PROOF OF ASSIGNMENT RULE

Suppose the state variables are x1, x2, . . . , xn. Suppose that the assignment has
the form x1 := E(x1, x2, . . . , xn), with no loss of generality.

Define β(x1, x2, . . . , xn) = α(E(x1, . . . , xn), x2, . . . , xn), a test. Then let
(a1, a2, . . . , an) be a state vector for input.

Following the application of the assignment, the output is

E(a1, a2, . . . , an), a2, . . . , an) = (b1, a2, . . . , an)

Clearly then, β(a1, a2, . . . , an) = α(b1, a2, . . . , an). So (a1, a2, . . . , an) satisfies
β = α[E/x] if and only if (b1, a2, . . . , an) satisfies α

So α[E/x1] counts as True every possible input to the assignment that gives
an output satisfying α. So β = α[E/x1] is the most general possible precondition
making the tripple correct.

	Introduction
	Advantages of Formal Methods
	State Vector
	Most basic code
	Examples
	Example 1
	Example 2

	Pieces of Code
	Assignment
	Concatentation
	If-then-else
	While
	Example

	Code
	Example One
	Example Two

	Floyd-Hoare Logic
	Hoare Tripple
	Example One
	Example Two
	Example Three

	Assignment Rule
	Example One
	Example Two
	Proofs

	Weakening Rule
	Rule
	Example

	Concatenation (Composition) Rule
	Proof of Soundness
	Example

	If-rules
	While Rule

	Lecture Date Map
	Lecture Start Notes
	9 September 2008
	10 September 2008
	Revision

	11 September 2008
	16 September 2008
	17 September 2008
	18 September 2008

	Rigorous Proof of Assignment Rule
	Proof One
	Proof Two

