Dr. Robi Malik Department of Computer Science The University of Waikato

COMP340-08B Laws of Equivalence

Idempotence	$p \wedge p$ is logically equivalent to p
	$p \lor p$ is logically equivalent to p
Identity	$p \wedge true$ is logically equivalent to p
	$p \lor false$ is logically equivalent to p
Domination	$p \wedge false$ is logically equivalent to $false$
	$p \lor true$ is logically equivalent to $true$
Commutativity	p * q is logically equivalent to $q * p$,
	where $*$ can be either \land , \lor , \oplus , or \leftrightarrow , but not \rightarrow
Associativity	p * (q * r) is logically equivalent to $(p * q) * r$,
	where $*$ can be either \land , \lor , \oplus , or \leftrightarrow , but not \rightarrow
Distributivity	$p \wedge (q \vee r)$ is logically equivalent to $(p \wedge q) \vee (p \wedge r)$
	$p \lor (q \land r)$ is logically equivalent to $(p \lor q) \land (p \lor r)$
De Morgan's Laws	$\neg(p \land q)$ is logically equivalent to $\neg p \lor \neg q$
	$\neg(p \lor q)$ is logically equivalent to $\neg p \land \neg q$
Absorption	$p \lor (p \land q)$ is logically equivalent to p
	$p \wedge (p \lor q)$ is logically equivalent to p
Double Negation	$\neg \neg p$ is logically equivalent to p
Excluded Middle	$p \wedge \neg p$ is logically equivalent to <i>false</i>
	$p \vee \neg p$ is logically equivalent to true
Definitions	$p \to q$ is logically equivalent to $\neg p \lor q$
	$p \leftrightarrow q$ is logically equivalent to $(p \rightarrow q) \land (q \rightarrow p)$
	$p \oplus q$ is logically equivalent to $(p \lor q) \land \neg (p \land q)$