
The University of Waikato
Department of Computer Science
Dr. Robi Malik

COMP 340-08B

Reasoning about Programs

ProofNavigator Reference Chart

The Basics

The RISC ProofNavigator is installed in the Linux labs and can be run using the command

ProofNavigator

ProofNavigator automatically saves every proof once it is completed. You can also save an

incomplete proof: simply press the exit button () and confirm that you want to exit.

When you open the same proof again, you will be asked whether you want to “Replay the

skeleton proof”, and if you answer “Y” to this question, ProofNavigator will restore the
state from before you exited.

Commands

Following are the most common ProofNavigator commands that you will need to complete
the assignments. Most of these commands can be started from the menu, and some can
also be invoked using the toolbar at the bottom of the main window.

assume 〈formula〉 — Introduces a new formula as an intermediate step. This command
produces two new proof states: the first one is obtained by adding the given formula

as an assumption to the current proof state, and in the second state this formula is
to be proved from the current assumptions.

Example. assume gcd(x 0,0) >= x 0 AND gcd(x 0,0) <= x 0;

auto () — Tries to close the proof state by trying various instantiations for all uni-
versally quantified assumptions, and all existentially quantified goals. Only a small
number of simple instantiations is attempted, and if they do not help to close the
proof state, the command has no effect. Nevertheless, this command can take some
time.

auto 〈line〉 — Same as auto, but tries to instantiate only the formula in the line given.

expand 〈name〉 — Replaces the name of a function or predicate by its definition. This
command requires that the given name has been explicitly defined, it does not work
for predicates or functions defined implicitly through axioms. Expansion can be
applied to a single formula, or to the entire proof state.

Example. expand divides in xon;

case 〈formula〉 — Performs case distinction. Given a formula A, this command intro-
duces the tautology A ∨ ¬A and applies ∨-elim to it, splitting the proof state into
two new states with additional assumptions A and ¬A, respectively.

Example. case x 0=0;

decompose () — Repeatedly applies ∀-intro and →-intro to the current goal, and
∃-elim to all applicable assumptions, introducing new assumptions and Skolem con-
stants. Also splits assumptions using ∧-elim and ↔-elim, applies →-elim, and per-
forms simplifications as much as possible.

goal 〈line〉 — Starts a proof by contradiction. The current goal is negated and added
to the assumptions, and replaced by the negation of the formula in the given as-
sumption line.

induction 〈var〉 in 〈line〉 — Proves the given goal by induction. The goal must be a
universally quantified formula, var must be one of the quantified variables, and its
type must be N. If these conditions are satisfied, two new proof states are generated,
one for the inductive base and another for the inductive step.

Example. induction x in cq1;

instantiate 〈t1, . . . , tn〉 in 〈line〉 — Applies ∀-elim to an assumption, or ∃-intro to a
goal, substituting the given terms for the variables.

Example. instantiate 0,x 0+1 in bwz;

lemma 〈name〉 — Adds a (proved or unproved) formula from the declarations window
as a new assumption to the current proof state.

Example. lemma MULT 1a;

scatter () — A convenient shorthand for the combination of decompose and split,
introducing Skolem constants and splitting up the proof.

split () — Splits the proof state by applying ∧-intro and ↔-intro to the goal.

split 〈line〉 — Splits a disjunction or implication in an assumption into subproofs using
∨-elim. Implications A → B can also be split by this command, producing (among
others) a new subproof with the negated precondition ¬A as a new assumption.
You may next want to use the command goal 〈line〉 on this negated precondition
formula to achieve the effect of →-elim.

For more information please read the tutorial and the manuals.

http://www.risc.uni-linz.ac.at/research/formal/software/ProofNavigator/

