
COMP235 : Logic and Computation

Supplementary notes on Kleene’s Theorem

This material is not covered in the hand-out booklet.

1 Transition Graphs

A transition graph over the finite alphabet X is a directed graph T such that:

• each edge of T is labelled with a regular expression over X

• there is a unique starting vertex (= state)

• some vertices may be accepting states

The language accepted by the transition graph T , L(T ), is all strings over X
w = w1w2 · · ·wk where each wi ∈ L(Ri), Ri the label on edge ei where e1, e2, · · · , ek

is a path from the starting state through to an accepting state.
(If T is an NFSA, this is the same as our earlier definition.)
Transition graphs T1 and T2 are equivalent if L(T1) = L(T2).
An elementary transition graph (ETG) is a transition graph which has two states

only, one starting and the other accepting, and at most one edge between them.

2 Finding an NFSA accepting R, a regular language

Given an ETG T , with single edge having label the regular expression R over X,
we can convert T to an equivalent NFSA using the following step repeatedly:

• replace an edge from q to r labelled R + S by two parallel edges from q to r,
one labelled R and the other labelled S

• replace an edge from q to r labelled RS by an edge from q to the new state t
labelled R and an edge from t to r labelled S

• replace an edge from q to r labelled R∗ by an edge from q to the new state t
labelled λ (= empty word), a loop on t labelled R, and an edge from t to r
labelled λ

This can only be done finitely many times before all edge labels are single characters
in X, or the empty word. By then we have a NFSA M such that L(M) = R, since
each TG along the way is equivalent to the ETG we started with, which clearly
accepts R.

1



3 Given M an NFSA: find a regular expression R such
that L(M) = R,

Given an NFSA M , first of all:

1. introduce a new starting state q0 and a new accepting state qF

2. join q0 to each starting state, and each accepting state to qF , and label these
new edges λ

Throughout the following process:

• eliminate parallel edges: if there are two edges from state q to state r, labelled
R and S, combine as a single edge from q to r labelled R + S.

Eliminate states successively, other than q0 and qF . Eliminate state q as follows:

1. if there is a loop on q labelled R, and an edge from q to r with label S, replace
that label by R∗S; do this for each edge coming out of q

2. once this is done, delete the loop on q

3. if there is an edge (p, q) from state p to state q, with label R, and an edge
(q, r) with label S, add in an edge (p, r) with label RS

4. once this is done wherever possible, delete q and all edges coming in to or
going out of it

This process stops when all states are deleted except q0 and qF , and there is at
most one edge (q0, qF ) remaining, with label R say. Each state deletion does not
alter the language accepted, so L(M) = R. (If no edges remain at the end, it means
M accepts the empty language (ie no strings are accepted).

Any comments or queries: please contact Tim Stokes (stokes@math.waikato.ac.nz).


