
COMP235 : Logic and Computation

Supplementary notes on languages

1 Defining Strings and Formal languages

What is a language?
We are all familiar with natural languages, such as English, Chinese, Latin and so

on. These are very complicated in general (though surprisingly have many important
structural features in common).

A simpler idea is that of a formal language, which can be defined using some
clear set of rules, for example a grammar. Example: programming languages.

The theory of formal languages we are about to consider in detail is very im-
portant for the construction and theory of compilers, and for pattern matching (for
example in a document). It is also important for understanding natural languages.
For us, the main importance is the link with abstract machines (which are used to
formalise the idea of a computation).

To define a formal language properly, we first need to consider some simpler
concepts.

Strings

• alphabet: any finite set X of symbols (= characters, = letters);

• string: (= word) a finite sequence of symbols from a fixed alphabet X (and
we say “ a string over X”;

• concatenation of two strings: given two strings over the same alphabet w1, w2,
their concatenation is w1w2, the string obtained by “pasting together” w1 and
w2 (in that order).

For example, let X = {a, b, c, . . . , z} be an alphabet (the “usual” one!). Then an
example of a string over X is w1 = bird. But so is w2 = fghi. The concatenation
of these two strings is w1w2 = birdfghi. Note that this is not the same as their
concatenation in the opposite order w2w1 = fghibird.

A commonly used alphabet is X = {0, 1}, and we say any string over this X is
a binary string.

Some notation. Let X be any alphabet.

• λ denotes the empty string over X, which is the string with no symbols in it.

• If a ∈ X, then for any integer n > 0, an is shorthand for aaa · · · a (n times).
We also define a0 = λ. Note that the usual index laws of algebra work: for
m,n ≥ 0:

aman = am+n.

1



Concatenation of strings is always associative:

(w1w2)w3 = w1(w2w3)

for all strings w1, w2, w3 over an alphabet X. And λ acts as an identity element
under concatenation: wλ = λw = w for all strings w over X.

Formal languages

We can now make the following definition. A formal language (or just language)
over the alphabet X is any set of strings over a finite alphabet X.

For example, let X = {a, b, c, . . . , z} as before. Some examples of languages over
X are as follows.

• A = {a, aa, aaa, aaaa, . . .}, the set of all non-empty strings consisting only of
as. Note that A is an infinite language.

• B = {ab, aabb, aaabbb, . . .}.

• C = {fghi, gk, zwx}.

• D = {bird, cat, dog}.

Any language consisting of binary strings is called a binary language.
For any alphabet X, Λ = {λ} is the language consisting only of the empty string.

Note that this is different from ∅, the empty language, which has no strings in it.

Operations on languages

Let A,B be languages over the same alphabet X.

• The sum of A and B, A+B, is the union of the sets A,B and is also a language
over X.

• The concatenation of A with B is

AB = {w1w2 | w1 ∈ A,w2 ∈ B},

all possible concatenations of strings from A with strings from B in that order.

• the Kleene closure of A, A∗ is defined to be the infinite union

A∗ = Λ + A + AA + AAA + · · · ,

which is the set of all strings made up of any number of strings from A con-
catenated together (including the empty string).

Notation: as for strings, we write An = AAA · · ·A (n times) for any positive
integer n, and define A0 = Λ. This makes sense because concatenation of languages
over a fixed alphabet is associative (just like concatenation of strings):

(AB)C = A(BC).



This notation allows us to write the Kleene closure of A as

A∗ =
∑
n≥0

An = Λ + A + A2 + A3 + · · ·

The Kleene closure operation is the most tightly bound operation, followed by
concatenation, and then union. Thus in the absence of brackets, we are to read
A+BC∗ as first computing C∗, then B(C∗), then the sum A+(B(C∗)). Fortunately,
this is quite similar with the usual convention in algebra!

Some examples. Let X = {0, 1}, with A = {0}∗ = {λ, 0, 00, 000, . . .} and
B = {1} two languages over X, hence binary languages.

• A + B = {0n | n ≥ 0} ∪ {1}, which in words is all strings consisting of any
number of 0s or a single 1.

• AB = {0n1 | n ≥ 0}, which is all strings consisting of any number of 0s
followed by a single 1.

• A(BB)∗ = {0n12m | n, m ≥ 0}, which is all strings consisting of any number
of 0s followed by an even number of 1s.

In fact the operations on languages satisfy a number of other laws, such as

• A + B = B + A

• (A + B) + C = A + (B + C)

• A(BC) = (AB)C

• A∗∗ = A∗,

among others.
Elements of an alphabet X can themselves be viewed as strings of length 1 over

X, and we view X as a language over itself (consisting of all strings of length 1).
Because of this, a very convenient way to describe the set of all strings over an
alphabet X is as X∗: this is all possible strings formed from the strings in X, i.e.
the letters in X.

2 Regular Languages

These are algebraic expressions built out of the language operations.
The regular languages on an alphabet X can be defined recursively as follows:

1. ∅, Λ are regular languages

2. every set consisting of a single element of X is a regular language

3. if E and F are regular languages, so are EF, E + F, E∗.



The other point is that for x ∈ X, we abbreviate {x} to x, allowing the context to
tell us whether we mean the symbol x or the language {x} when we write simply
‘x’. Then the language concatenation which is normally written as {1}{1} can more
simply be written as 11.

For example, if X = {0, 1} then R = (0+11)∗ is a regular language over X, and
then

R = (0 + 11)∗

= ({0} + {1}{1})∗

= ({0} + {11})∗

= {0, 11}∗

= {λ, 0, 00, 11, 011, 110, 000, 0011, 0110, · · ·}
= all strings in which any 1s occur in pairs.

Every finite language is regular. To see this, consider the following example of
a binary language: A = {0, 101, 1100}. What regular expression determines this?
Easy: A = 0 + 101 + 1100! (Just compute to verify this.) This generalises to any
finite language in the obvious way.

Regular expressions are very useful in pattern matching (many Unix tools use
them for instance).


