COMP235A: Logic and Computation

Sets, functions and relations.

1 Sets

Since the description of setwas stated by G. Cantor in 1895, the theory of sets has in-
fluenced many branches of mathematics. Here we shall not be looking at the mathematical
theory of sets as such, but rather, we shall introduce some useful terminology and notation.
As we shall see later, sets give risertdationswhich have applications in such areas as
relational databases.

Sets are used to group objects together. Much of the material that we cover on sets may
be familiar to you already.

Definition 1 A setis a well defined collection of distinct objects. The objects of a set are
called theelementor member®f the set. Itz is a member of a sed4, we say that belongs

to A and use the notation € A. On the other hand, & does not belong to the sdt, we
write a & A.

It is important that the objects be well defined. For example, “the collection of warm
days in October” is not a set since the objects are not well defined.

A given set may be specified in several ways. If the set does not have too many mem-
bers, it can be written down explicitly.

Example 1. The set containing the first five positive integers may be writteAd as
{1,2,3,4,5}.

If there is a clear pattern to the members, we may make use of an ellipsis (three dots) to
specify a set.

Example 2. The set containing th26 capital letters of the English alphabet may be
written asA = {A,B,...,Y,Z}.

A set written in any of these ways is said to be writteremumerated formA second
way of specifying a set is to give the property or properties that define a set.

Example 3. The set

A= {z:1000 < = < 2000}

is the set of all numbers betwe&f00 and2000, including2000, but not1000.

A set written in this way is say to be predicate fornor written inset-builder notation

Many of the sets we have dealt with or will be dealing with are sets of numbers. These
include the following:

e Nis the set of natural numbers (that is, positive integers).

e 7 is the set of all integers.



e Qs the set of all rational numbers (thatis= {z : x = a/b, a,b € Z,b # 0}).
e R isthe set of real numbers.

e Cis the set of complex numbers.

There is another set for which we introduce a special symbol. This isuter empty
set. As its name implies, it is the set which has no elements and we denote thigisdtt by
may be written in enumerated form &5 Note that the sef is not the same as the sfgt}.
The latter is a set with one element, namigly

A set isfinite if the number of elements in it is finite. Otherwise it isiafinite set. For
a finite set, thecardinality of a set is the number of elements that belong to the set and we
use|A| to denote the cardinality of a sdt Thus|@| = 0.

Example 4. The setd = {A,B,...,Y,Z} given earlier is finite and has cardinalilg.
The sefR is an infinite set.

Definition 2 A setA is asubsebf a setB if every element ofl is an element oB. We use
the notationA C B.

It is clear from this definition thatl C A. If A C B and there is at least one element of
B that does not belong td, then we say thatl is aproper subsebf B. It may be shown
that() C A for any setA.

Some books use the symbolto denote subset ard to denote a proper subset. Here
we shall useC to denote both proper and improper subsets.

Example 5WehaveNCZ CQ C R C C.

Example 6. Let A be the set of vowels in the English alphabet dndbe the set of
letters in the English alphabet. It is clear thhis a proper subset ds.

One can also see from the definition of subset that the4etsd B are identical only
if AC BandB C A. Inthat case we writel = B.

2 Setoperations

Two sets can be combined in many ways. For example, consider the set of students doing
this algebra paper. Two subsets of this set are the set of students doing computer science
papers and the set of students doing chemistry papers. We might want the set of students
who are doing either chemistry or computer science papers or perhaps the set of students
who are doing chemistry papers, but not computer science papers.

We now list the operations that may be defined on sets.

Definition 3 Theintersectiorof two sets4 and B is
ANB={z:2z € Aandz € B}.
In words, the intersection o and B is the set of elements which belong to bdthnd B.

Example 7.Let A be the set of those students in this paper also doing computer science
papers, and® be the set of those students in this paper also doing chemistry papers. Then
AN B is the set of students in this paper who are doing both computer science and chemistry
papers.



Definition 4 The setsd and B are said to bedisjointif A N B = (), that is, they have no
elements in common.

Example 8. Let A be the set of positive integers antlbe the set of negative integers.
Clearly A and B are disjoint sets.

Definition 5 Theunionof A and B is
AUB={z:xz€ Aorz € B}.
In words, the union ofi and B is the set of elements which belong to eitHeor B.
If A andB are both finite sets, then
|AUB| = |A|+|B| —|ANB|. 1)

This formula is derived from the fact that if the cardinalitiesdoénd B are added, then the
elements iMA N B will be counted twice, so this is compensated for by subtragting B|.

Example 9. With A and B are in Example 7A U B is the set of students in this paper
who are doing either computer science papers or chemistry papers.

Definition 6 Thecomplemenbf A C X is
A={z:z € X andx ¢ A}.
In words, the complement df is the set of elements ik which do not belong tal.
If both X and A are finite sets, then
Al = 1X] - |A]. (2)

Usually, X would be clear from the context.

Example 10.Let A be the set defined in Example 7 aidbe the set of students in this
paper. Ther is the set of students in this paper who are not doing any computer science
papers.

Example 11.With the sets4d and B as given in Example 7, suppose that there are 200
students in this papefd| = 125, |B| = 67, and|A N B| = 50. We want to find out how
many of the200 algebra students are not doing any computer science papers or chemistry
papers. Thus we wish to findl U B|. From (1), we have

|AUB| = |A|+ |B| —|AN B| = 1254 67 — 50 = 142.
It then follows from (2) that the required answeR¥ — 142 = 58.
Definition 7 Thedifferenceof A and B is

A\B ={z:2 € Aandz ¢ B}.

In words, the difference ad and B is the set of elements which belong4pbut not toB.



It is not hard to show that ifi, B are contained in some bigger set
A\B = AN B.
In any case, it is always true thatif C A, then
|A\B| = |4] — |B|.
Theorem 8 For any two setsA and B, A\B = A\(AN B).

To prove this we must show\ B C A\(A N B) and alsc4\(A N B) C A\B.
For the first direction, suppose € A\B. Thenz € A andx ¢ B, so certainly
x ¢ AN B C B. Hencexr € A\(A N B). Hence by definitionA\ B C A\(A N B).
Conversely, suppose € A\(AN B). Thenz € A andz ¢ AN B. We want to show
x ¢ B. Suppose rather thate B. Thenz € AN B (sincex € A), a contradiction. So our
assumption that € B is wrong, sox ¢ B. Since alsar € A, we haver € A\B, so by
definition, A\ (A N B) C A\ B, completing the proof. O

Example 12. With the sets as given in Example 7, the gatB is the set of students
in this paper who are doing computer science papers, but not doing any chemistry papers.
Using the values from Example 11, it is not hard to see that

|A\B| = |A\(ANB)| = |A| — |AN B| = 125 — 50 = 75 sinceAN B C A

3 Functions

In many cases we assign to each element of a set a particular element of a second set (which
may be the same as the first set). If you're doing calculus, then a familiar example is for

a given real number, the assignment of another real number. Such an assignment is an
example of a function. Though such functions may be graphed, there are other functions
which are more general and not able to be graphed in the way that you are familiar with.

Definition 9 Let A and B be sets. Aunctionfrom A to B is an assignment of exactly one
element ofB to each element ofl. We write f(a) = b if b is the unique element d®
assigned by the functiofito the element of A. If f is a function fromA to B, we write
f:A— B.

Example 13. Let A = {aj,a2,a3,a4} and B = {by,bo, b3, bs,b5}. Let g be the
assignments froml to B given by

g(a1) = b3, g(a1) = ba, g(az) = bs, g(az) = b1, g(as) = ba.

Though it is not obvious how to draw a graph of these assignments in the conventional
sense, we can depict these assignments by use afreww diagram This is given below
and we see thatis nota function as a function cannot have more than one arrow emerging



from any element ofd.

Definition 10 If f is a function fromA to B, we say thatd is thedomainof f and B is the
codomainof A. If f(a) = b, we say thab is theimageof a. Thepre-imageofb € B is the
set{a € A | f(a) = b}, a subset oA which may be empty. Thangeof f is the set of all
images of the elements @f If f is a function fromA to B, we say thaif mapsA to B.

Just as for sets, there is a notion of equality for functions. Thus the funcfions
Ay — Byandf; : Ay — By areequalif Ay = Ag, By = Bg, andfi(a) = fa2(a) for all
a € Al = As.

When f is a function from a sefl to a setB, the image of a subset of can also be
defined:

Definition 11 Let f be a function from the set to the setB. Supposeés is a subset of
A. Theimageof S is the subset oB that consists of the images of the elementS.oWe
denote this by

f(S)={f(s): s € 5},

Some functions have distinct images at distinct members of the domain. Such a function
is said to be one-to-one.

Definition 12 A functionf is said to beone-to-oner injectiveif and only if f (a1) = f(a2)
implies thata; = a» for all aq, as in the domain off. A function is said to be amjection
if it is one-to-one.

Another way of expressing this idea is thyats one-to-one if and only (a;) # f(as2)
whenevera;, # as. It is sometimes important that a function be one-to-one. For example,
consider a function which maps from the set of all possible original messages to the set of
all encrypted secret messages. If the function is not one-to-one, then it is possible that two
different messages could result in the same encrypted message. Obviously, there are going
to be difficulties when it comes to decryption. A one-to-one function is shown in the arrow



diagram below.

The function shown in the following arrow diagram is not one-to-one as there are two
arrows which go té;,.

Definition 13 A functionf is said to beontoor surjectiveif and only if for every element
b € B, there is an element € A for which f(a) = b. A function is said to be asurjection
if it is onto.

In other words, the function is onto if the range fotonsists of the seB. Neither of
the functions shown in the previous two arrow diagrams are onto. Here is an example of
one that is.

Definition 14 If a function is both one-to-one and onto, then it is known agection



The previous arrow diagram shows a bijective function as does the next one.

Bijective functions have the important property that they have an inverse function. In
more detail, sincef is an onto function, then every element Bfis the image of some
element ofA. Furthermore, becauggis one-to-one, then every element®fis the image
of auniqueelement ofA. As a result, we can define a new function frdmto A which
reverses the mapping.

Definition 15 Let f be a bijection fromA to B. Theinverse functiorof f is the function
that assigns to each € B, the unique element € A such thatf(a) = b. We denote the
inverse function by ~!. Hence,f~!(b) = a whenf(a) = b. In this situation, we say that
f isinvertible

Earlier on, we mentioned a function which maps from the set of all possible original
messages to the set of all encrypted secret messages. We have already mentioned that it is
important that such a function be one-to-one. It is also important that such a function be
onto as well. If it were not, there would not be an inverse function meaning that there are
encrypted messages that cannot be decrypted.

Another example is in compression and decompression of files. These processes are
usually required on computers to save storage. A function which maps sets of files to sets
of compressed files needs to be bijective. However, it is interesting to note that there is
no file compression algorithm that compresses every file! A stronger statement is that any
file compression algorithm that makes at least one file smaller must make at least one file
larger!

Definition 16 Let g be a function from the set to the setB and let f be a function from
the setB to the set”'. Thecompositionof the functionsf and g is denoted byf o ¢ and



defined by
(fog)(a) = flg(a)).

It is a mapping from the set to the seCC.

Composition satisfies some important properties. For example, it follows fairly easily
that it isassociativeif h : A — B,g: B — C andf : C — D are all functions, then

fo(goh)=(fog)oh.

Definition 17 Let A be a set. Denote b, : A — A, the function which maps € A to
itself: I4(a) = a for all a € A. This function is obviously bijective and is self-inverse.

It is obvious that iff : A — B is a function, then

f:fOIA:IBOf.

Let f : A — B be a bijective function. Because of the way we have defjied: B —
A, it should be clear that

foft=I4andf o f=1Ig.

In fact this last property can be used as a definition of when a function has an inverse, and
it can then be shown that a function is invertible if and only if it is bijective.

4 Relations

Relationships between elements of a set occur in many contexts. For example, there is a
relationship between each student in this class and his or her student ID number. Relation-
ships between elements of a set may be represented using the structure calitida
There are mathematical relations such as one number being less than another and non-
mathematical relations such as relationships between members of a family—one person
may be the sister of another, for example.

Before giving the definition of a relation, we need the concept of a Cartesian product.

Definition 18 The ordered pair(ay, a2) is the ordered collection that has, as its first
element and, as its second.

Definition 19 Let A and B be sets. The&artesian produadf A and B is the set of all
ordered pairs(a, b), wherea € A andb € B. We use the notatiod x B. Hence,

A x B={(a,b):ac Aandb € B}.
Example 14.Let A = {1,2,3,4,5} andB = {a, b, c}. Then

Ax B = {(1,a),(1,b),(1,¢),(2,a),(2,b),(2,¢),
(37 a)’ (37 b)7 (37 0)7 (47 a)’ (47 b)7 (47 C)’
(5,a),(5,b), (5,¢)}.



We can generalize the above definition to the Cartesian producsefsA;,.. ., A,.
The Cartesian product is then

A1 X A2 X oo X An = (al,ag,...,an),
wherea; € A;. The quantity(a;, as, ..., ay) is known as amrderedn-tuple

Definition 20 Let A and B be sets. Ainary relationfrom A to B is a subset oA x B. We
denote this set bR. The notatioruRb indicates that(a,b) € R, while the notatioru Rb
indicates thata, b) € R. WhenaRb, we say thab is related toa by R.

We define equality of relations in a straightforward way: they must be subsets of the
same cartesian produdt x B, and must have the same ordered pairs in them.

In the previous section we considered functions. A funcfiord — B may be thought
of as arelation iM x B in which exactly one element @ is related to each element dfby
b= f(a), sof can be thought of as nothing but the relatidn, f(a)) | a € A} C A x B.

For example, letd = {1,2,3,4} andB = {p, q,r}, and define

Rl = {(17 Q)7 (17 7“), (2717), (47 Q)}

Note that this relation is not a function. (If it were, théfl) would have two values!)
Arrowgrams can be used to represent arelaioft A x B also: simply draw an arrow
froma € Atob e Bif (a,b) € R.
Since a relation is a set, the usual set operations (such as union and intersection) may
be applied to relations. But there are other operations as well, similar to those for functions.
Thus we can define theonverseof a given relationR C A x B to be the relation
R~ C B x A by setting

R~ ={(b,a) | (a,b) € R}.
For our example,

Rfl = {(Qa 1)? (Ta 1)> (pv 2)? (Qv4)}'

The arrowgram simply has the arrows reversed.

Generally if R defines a functionR ! is not a function, only a relation. But iR
defines a bijective function, théR~! is nothing but its inverse function.

We can compose relations in a way that generalises how we compose functions. If
R1 C Ax BandRy C B x C, then we define

R90R1 ={(a,c) | a € A, c € C, and there exists € B such thaf(a, b) € R4, (b,c) € Ra}.

For example, lettingd, B andR; C A x B be as before, define al€o = {x, +, x},
and letRy = {(q, %), (1, %), (p, +)} € B x C. Then we can compute

RQ o Rl = {(1, *), (2, —|—), (4, *)}

Note thatR; o R, does not exist!
Of special interest to us are relations from a gdb itself. Such a relation is said to
be arelation on the set4, and by definition, is a subset ¢f x A. The above definition



of a relation is quite formal and it is useful to informally think of a relation on a/sat a
statement about ordered pairs, as) belonging toA x A. The statement must be either
true or false for each particular pair of valugsandas.

Example 15.Let A = {1,2,3}. We consider the ordered pairs in the relation

R = {(a1,a2) : a1 is greater thams }.
Now we have

AxA = {(1,1),(1,2),(1,3),(2,1),(2,2),

We then find that

R = {(27 1)7 (37 1)7 (37 2)}

Thus we can write@R1, 3R1, and3R2. In this example, we do not even need to Gsas
the relation already has its own symbol, namely.'Thus we can write2 > 1 to indicate
that2 and1 are related by being greater thakh.
For relations on a single set, there are other ways to represent them besides just arrow-
grams: we can usdirected graph®r digraphs but we shall not consider these any further
in this section.



