 |
HP OpenVMS Programming Concepts Manual
30.7.3.4 Error Logging
The Gateway error log file records errors that prevent it from passing
transaction information to DECdtm resource managers. The log file shows
more detailed error information than that revealed by XA return values.
To enable error logging, define the logical name SYS$DECDTM_XG_ERROR to
specify an error file. You can define the logical name processwide,
groupwide, or systemwide. However, you must define it for both TP
processes and the Gateway server process. The error file is created
automatically and is shared between processes.
Error records have the following formats:
Record Type |
Format |
General
|
time csid pid "VMS" vms_status "on" operation
|
Transaction
|
time csid pid "VMS" vms_status "on" operation ", DECdtm TID"
tid
|
TP process
|
time csid pid "XA" xa_status "VMS" vms_status "on" operation ",
DECdtm TID" tid
|
30.7.3.5 Tracing
The Gateway includes a trace facility to help investigate problems of
interaction between an XA TM and DECdtm resource managers. The trace
file shows the sequence of operations. It also shows more detailed
error information than that revealed by XA return values.
To enable tracing, define the logical name SYS$DECDTM_XG_TRACE to
specify a trace file. You can define the logical name processwide,
groupwide, or systemwide. However, you must define it for TP processes
and for the Gateway server process. The trace file is created
automatically and is shared between processes.
The trace file records the following information:
- All xa_ calls to the Gateway.
- XA and OpenVMS error status results returned by the XA functions.
- Transaction events reported to DECdtm by the Gateway.
Trace records have the following formats:
Record Type |
Format |
Operation
|
time csid pid operation [flags]
|
Status
|
time csid pid xa_status ["VMS" vms_status] [extra_info]
|
30.7.4 XA Gateway Control Program (XGCP) Utility
This section describes the XA Gateway Control Program (XGCP) utility.
30.7.4.1 XGCP Description
The XGCP utility creates the transaction logs used by the DECdtm XA
Gateway. You can also use it to stop and restart the XA Gateway server.
The Gateway allows a resource manager compliant with DECdtm, such as
RMS Journaling or Oracle Rdb, to be used with an XA-compliant
transaction manager.
30.7.4.2 XGCP Usage Summary
XGCP provides the management interface to the DECdtm XA Gateway.
30.7.4.3 XGCP Description
To invoke XGCP, enter the RUN SYS$SYSTEM:XGCP command at the DCL
command prompt. The command has no parameters. At the XGCP> prompt,
you can enter any of the XGCP commands described in Section 30.7.4.4.
To exit from XGCP, enter the EXIT command at the XGCP> prompt, or
press Ctrl/Z.
30.7.4.4 XGCP Commands
The following table summarizes the XGCP commands.
Command |
Format |
Description |
CREATE_LOG
|
CREATE_LOG
|
Creates a new XA Gateway log.
This command requires SYSPRV privilege or read/write access to the
SYS$JOURNAL directory.
Create a gateway log with the name SYS$JOURNAL:SYSTEM$
name.DDTM$XG_JOURNAL.
Create a separate log for each node of an OpenVMS Cluster.
The log file is automatically expanded when necessary.
Qualifier |
Description |
/GATEWAY_NAME=name
|
Specifies a gateway name of up to 15 characters. This qualifier is
required.
|
/SIZE=size
|
Specifies the initial size of the log, in blocks. If you omit this
qualifier, the log is created with an initial size of 242 blocks.
|
|
EXIT
|
EXIT
|
Exits XGCP
|
START_SERVER
|
START_SERVER
|
Starts the XA Gateway server.
Requires the IMPERSONATE privilege.
This command executes the DCL command file
SYS$STARTUP:DDTM$XG_STARTUP.COM. The server process is called
DDTM$XG_SERVER.
|
STOP_SERVER
|
STOP_SERVER
|
Stops the XA Gateway server. Requires OPER privilege.
|
30.8 Program Examples Using DECdtm
The following sections present Fortran, C, and BLISS examples of
applications using DECdtm.
30.8.1 Fortran Program Example
The following is a sample Fortran application that uses DECdtm system
services. (See SYS$EXAMPLES:DECDTM$EXAMPLE1.)
The application opens two files, sets a counter, then enters a loop to
perform the following steps:
- Increments the counter by 1.
- Calls SYS$START_TRANSW to start a new transaction.
- Writes the counter value to the two files.
- Either calls SYS$END_TRANSW to attempt to commit the transaction,
or calls SYS$ABORT_TRANSW to abort the transaction.
The application repeats these steps until either an error occurs or the
user requests an interrupt. Because DECdtm services are used, the two
files will always be in step with each other. If DECdtm services were
not used, one file could have been updated while the other was not.
This would result in the files being out of step.
This example contains numbered callouts, which are explained after the
program listing.
C
C This program assumes that the files DECDTM$EXAMPLE1.FILE_1 and
C DECDTM$EXAMPLE1.FILE_2 are created and marked for recovery unit
C journaling using the command file SYS$EXAMPLES:DECDTM$EXAMPLE1.COM
C
C To run this example, enter the following:
C $ FORTRAN SYS$EXAMPLES:DECDTM$EXAMPLE1
C $ LINK DECDTM$EXAMPLE1
C $ @SYS$EXAMPLES:DECDTM$EXAMPLE1
C $ RUN DECDTM$EXAMPLE1
C
C
C SYS$EXAMPLES also contains an example C application, DECDTM$EXAMPLE2.C
C The C application performs the same operations as this Fortran example.
C
IMPLICIT NONE
INCLUDE '($SSDEF)'
INCLUDE '($FORIOSDEF)'
CHARACTER*12 STRING
INTEGER*2 IOSB(4)
INTEGER*4 STATUS,COUNT,TID(4)
INTEGER*4 SYS$START_TRANSW,SYS$END_TRANSW,SYS$ABORT_TRANSW
EXTERNAL SYS$START_TRANSW,SYS$END_TRANSW,SYS$ABORT_TRANSW
EXTERNAL JOURNAL_OPEN
C
C Open the two files
C
(1) OPEN (UNIT = 10, FILE = 'DECDTM$EXAMPLE1.FILE_1', STATUS = 'OLD',
1 ACCESS = 'DIRECT', RECL = 3, USEROPEN = JOURNAL_OPEN)
OPEN (UNIT = 11, FILE = 'DECDTM$EXAMPLE1.FILE_2', STATUS = 'OLD',
1 ACCESS = 'DIRECT', RECL = 3, USEROPEN = JOURNAL_OPEN)
COUNT = 0
TYPE *, 'Running DECdtm example program'
TYPE *, 'Press CTRL-Y to interrupt'
C
C Loop forever, updating both files under transaction control
C
DO WHILE (.TRUE.)
C
C Update the count and convert it to ASCII
C
(2) COUNT = COUNT + 1
ENCODE (12,8000,STRING) COUNT
8000 FORMAT (I12)
C
C Start the transaction
C
(3) STATUS = SYS$START_TRANSW (%VAL(1),,IOSB,,,TID)
IF (STATUS .NE. SS$_NORMAL .OR. IOSB(1) .NE. SS$_NORMAL) GO TO 9040
C
C Update the record in each file
C
(4) WRITE (UNIT = 10, REC = 1, ERR = 9000, IOSTAT = STATUS) STRING
WRITE (UNIT = 11, REC = 1, ERR = 9010, IOSTAT = STATUS) STRING
C
C Attempt to commit the transaction
C
(5) STATUS = SYS$END_TRANSW (%VAL(1),,IOSB,,,TID)
IF (STATUS .NE. SS$_NORMAL .OR. IOSB(1) .NE. SS$_NORMAL) GO TO 9050
END DO
C
C Errors that should cause the transaction to abort
C
(6)
9000 TYPE *, 'Failed to update DECDTM$EXAMPLE1.FILE_1'
GO TO 9020
9010 TYPE *, 'Failed to update DECDTM$EXAMPLE1.FILE_2'
9020 STATUS = SYS$ABORT_TRANSW (%VAL(1),,IOSB,,,TID)
IF (STATUS .NE. SS$_NORMAL .OR. IOSB(1) .NE. SS$_NORMAL) GO TO 9060
STOP
C
C Errors from DECdtm system services
C
9040 TYPE *, 'Unable to start a transaction'
GO TO 9070
9050 TYPE *, 'Failed to commit the transaction'
GO TO 9070
9060 TYPE *, 'Failed to abort the transaction'
9070 TYPE *, 'Status = ', STATUS, ' IOSB = ', IOSB(1)
END
C
C Switch off TRUNCATE access and PUT with truncate on OPEN for RU Journaling
C
INTEGER FUNCTION JOURNAL_OPEN (FAB, RAB, LUN)
INCLUDE '($FABDEF)'
INCLUDE '($RABDEF)'
INCLUDE '($SYSSRVNAM)'
RECORD /FABDEF/ FAB, /RABDEF/ RAB
FAB.FAB$B_FAC = FAB.FAB$B_FAC .AND. .NOT. FAB$M_TRN
RAB.RAB$L_ROP = RAB.RAB$L_ROP .AND. .NOT. RAB$M_TPT
JOURNAL_OPEN = SYS$OPEN (FAB)
IF (.NOT. JOURNAL_OPEN) RETURN
JOURNAL_OPEN = SYS$CONNECT (RAB)
RETURN
END
|
- The application opens DECDTM$EXAMPLE1.FILE_1
and DECDTM$EXAMPLE1.FILE_2 for writing. It then zeroes the variable
COUNT and enters an infinite loop.
- The application increments the count by one
and converts it to an ASCII string.
- The application calls SYS$START_TRANSW to
start a transaction. The application checks the immediate return status
and service completion status to see whether they signify an error.
- The application attempts to write the string
to the two files. If it cannot, the application aborts the transaction.
Because the files are OpenVMS RMS journaled files, the default
transaction is assumed.
- The application calls SYS$END_TRANSW to
attempt to commit the transaction. It checks the immediate return
status and service completion status to see whether they signify an
error. If they do, the application reports the error and exits. If
there are no errors, the transaction is committed and the application
continues with the loop.
- If either of the two files cannot be
updated, the application calls SYS$ABORT_TRANSW to abort the
transaction. It checks the immediate return status and service
completion status to see whether they signify an error. If they do, the
application reports the error and exits.
30.8.2 C Program Examples
The C examples are taken from the Transactional Array of Strings (TAOS)
sample resource manager. It implements a file holding an array of
string values that are updated by transactions. The sample is too large
to reproduce in this manual, but is available in SYS$EXAMPLES.
TAOS uses three in-memory data structures:
- taos: This holds global information about the string array,
including the rm_id. It is passed an opaque handle to
applications using TAOS.
- part: This is created when TAOS participates in a transaction. It
holds the TID and is specified as the rm_context to
$JOIN_RM. The taos structure holds a list of par structures indexed by
TID.
- res: This is created when a TAOS resource (a string) is referenced
or updated in a transaction. The part structure holds a list of res
structures indexed by array number.
The C examples use the following OpenVMS include files:
#include <ddtmdef.h>
#include <ddtmmsgdef.h>
#include <descrip.h>
#include <dtidef.h>
#include <iosbdef.h>
#include <ssdef.h>
#include <starlet.h>
#include <stsdef.h>
|
30.8.2.1 $DECLARE_RMW
This example shows the declaration of a resource manager to DECdtm.
struct taos {
uint tmLogId[4]; /* transaction manager log ID */
uint efn; /* event flag for TAOS operations */
uint rmId; /* resource manager ID */
struct dsc$descriptor_s resNameDsc; /* resource name */
char resName[24]; /* "TAOS____" + array ID */
};
int taos_Open(...) {
int status;
IOSB iosb;
BOOL declaredRm = FALSE;
status = sys$declare_rmw(pTaos->efn, 0, &iosb, NULL, 0, &pTaos->rmId,
&HandleEvent, &pTaos->resNameDsc, NULL,
0, pTaos->tmLogId, 0);
if (SUCCESS(status))
status = iosb.iosb$w_status;
if (SUCCESS(status))
declaredRm = TRUE;
return status;
}
|
30.8.2.2 $GET_DEFAULT_TRANS and $JOIN_RMW
This example shows how to check for a default transaction, and join the
resource manager to a transaction.
The function GetParticipantData() (not shown here) searches a list of
part structures for an existing TID. If one is not found, a new part
structure is allocated.
int taos_Write(.., uint pTid[4]) {
int status;
/* get transaction ID */
if (pTid != NULL)
CopyUid(tid, pTid);
else {
status = sys$get_default_trans(tid);
if (FAILURE(status))
return status;
}
/* if this is a new transaction, join it */
if (GetParticipantData(pTaos, tid, &pPart)) {
status = sys$join_rmw(pTaos->efn, 0, &iosb, NULL, 0,
pTaos->rmId, tid, NULL, pPart);
if (SUCCESS(status))
status = iosb.iosb$w_status;
if (FAILURE(status))
return status;
}
}
|
30.8.2.3 Event Handler and $ACK_EVENT
This example shows the event handler specified to DECdtm with
$DECLARE_RM.
static int HandleEvent(DDTM$R_REPORTDEF *pReport) {
struct taos *pTaos;
switch (pReport->ddtm$l_event_type) {
case DDTM$K_PREPARE:
Prepare(pReport);
break;
case DDTM$K_ABORT:
Abort(pReport);
break;
case DDTM$K_ONE_PHASE_COMMIT:
OnePhaseCommit(pReport);
break;
case DDTM$K_COMMIT:
Commit(pReport);
break;
return SS$_NORMAL;
}
/* Abort the transaction */
static void Abort(DDTM$R_REPORTDEF *pReport) {
struct part *pPart = (struct part *) pReport->ddtm$l_rm_context;
/* Undo the transaction here, using the list of resources
* attached to the part structure.
*/
/* DECdtm can forget the transaction */
sys$ack_event(0, pReport->ddtm$l_report_id, SS$_FORGET);
}
/* Prepare transaction (phase 1 commit) */
static void Prepare(DDTM$R_REPORTDEF *pReport) {
int status = SS$_NORMAL;
BOOL updates = FALSE;
/* Save updates on disk, using the list of resources attached to
* the part structure. Set updates if there are any. Set status
* on error;
/* vote on transaction */
if (FAILURE(status))
status = SS$_VETO; /* can't prepare, so abort tran */
else if (!updates)
status = SS$_FORGET; /* read-only transaction */
else
status = SS$_PREPARED; /* ready to commit or abort */
sys$ack_event(0, pReport->ddtm$l_report_id, status);
}
/* Commit transaction (phase 2) */
static void Commit(DDTM$R_REPORTDEF *pReport) {
int status = SS$_NORMAL;
/* Make updates permanent and visible to other users here.
* Set status on error.
*/
if (SUCCESS(status))
status = SS$_FORGET; /* DECdtm can forget transaction */
else {
/* We can't commit the transaction yet. We must ask DECdtm to
* remember the transaction, and we must terminate operations
* until a successful recovery is performed.
*/
pTaos->status = status;
status = SS$_REMEMBER;
}
/* acknowledge event */
sys$ack_event(0, pReport->ddtm$l_report_id, status);
}
/* Prepare and commit transaction in a single phase */
static void OnePhaseCommit(DDTM$R_REPORTDEF *pReport) {
int status = SS$_NORMAL;
/* Combine operations from Prepare() and Commit() here.
* Set status on error.
*/
/* report outcome to DECdtm */
if (FAILURE(status))
status = SS$_VETO; /* aborted */
else
status = SS$_NORMAL; /* committed */
status = SS$_NORMAL; /* committed */
sys$ack_event(0, pReport->ddtm$l_report_id, status);
}
|
30.8.2.4 $GETDTI and $SETDTI
This example shows the use of $GETDTI on recovery to determine the
final state of a transaction. $SETDTI is used to remove the resource
manager from the transaction.
/* Recover the state of a prepared resource after a failure */
RecoverString(...) {
int status;
IOSB iosb;
uint context = 0; /* context from $GETDTI */
int retlen;
Int state; /* transaction state */
DTIRECDEF dti;
ITMLST3_DECL (search, 1);
ITMLST3_ITEM (search, 0, DTI$_SEARCH_RESOLVED_STATE,
DTI$S_TRANSACTION_INFORMATION, &dti, 0);
DTI$S_TRANSACTION_INFORMATION, &dti, 0);
ITMLST3_END (search);
ITMLST3_DECL (result, 1);
ITMLST3_ITEM (result, 0, DTI$_TRANSACTION_INFORMATION,
DTI$S_TRANSACTION_INFORMATION, &dti, &retlen);
ITMLST3_END (result);
/* get final state of transaction */
dti.dti$b_part_name_len = 0; /* no RM name specified */
CopyUid((uint *) dti.dti$t_tid, pTaos->stringBuf.tid);
status = sys$getdtiw(pTaos->efn, DDTM$M_FULL_STATE, &iosb, NULL, 0,
pTaos->tmLogId, &context, &search, &result);
if (SUCCESS(status))
status = iosb.iosb$w_status;
if (SUCCESS(status))
state = dti.dti$b_state;
/* treat forgotten TID as presumed abort */
if (status == SS$_NOSUCHTID) {
state = DTI$K_ABORTED;
status = SS$_NORMAL;
}
if (SUCCESS(status)) {
switch (state) {
case DTI$K_COMMITTED:
/* Make update permanent and visible here.
* Set status on error. */
break;
case DTI$K_ABORTED:
/* Undo the update here. Set status on error. */
break;
}
}
if (SUCCESS(status)) {
/* allow DECdtm to remove this RM from the transaction */
status = sys$setdtiw(pTaos->efn, 0, &iosb, NULL, 0, &context
DTI$K_DELETE_RM_NAME, &result);
}
}
|
30.8.3 BLISS Program Examaple
The following BLISS program demonstrates how a simple resource manager
may perform recovery following a system failure. In the example, a
$GETDTI is executed on behalf of a remote node (MYNODE) specifying a
transaction identifier, named resource manager, participant log
identifier and transaction manager log identifier.
When the $GETDTI finishes processing, the recovery logic in the
resource manager performs its own recovery and issues a $SETDTI to
remove the resource manager name from the transaction.
MODULE RECOVER_TRANSACTION (MAIN=MAIN)=
BEGIN
LIBRARY'SYS$LIBRARY:STARLET';
FORWARD ROUTINE
MAIN,
AST_COMPLETION_ROUTINE : NOVALUE;
ROUTINE MAIN =
BEGIN
OWN
STATUS
: LONG UNSIGNED,
IOSB
: VECTOR [4,WORD],
SEARCH_CONTEXT
: LONG UNSIGNED
INITIAL (0),
PART_LOG_ID
: $BBLOCK [DTI$S_PART_LOG_ID]
INITIAL (REP DTI$S_PART_LOG_ID OF BYTE (0)),
TM_LOG_ID
: $BBLOCK [DTI$S_PART_LOG_ID]
INITIAL (REP DTI$S_PART_LOG_ID OF BYTE (0)),
TID
: $BBLOCK [DTI$S_TID]
INITIAL (REP DTI$S_TID OF BYTE (0)),
SEARCH_LIST
: $ITMLST_DECL (ITEMS=2),
ITEM_LIST
: $ITMLST_DECL (ITEMS=1),
TRANS_INFO
: $BBLOCK [DTI$S_TRANSACTION_INFORMATION];
BIND
SEARCH_NODE_NAME = UPLIT (%ASCII'MYNODE'),
RESOURCE_MANAGER = UPLIT (%ASCII'FRED');
LITERAL
SEARCH_NODE_NAME_LENGTH = %CHARCOUNT ('MYNODE'),
RESOURCE_MANAGER_LENGTH = %CHARCOUNT ('FRED');
! Resource manager opens recovery log and reads first resolved
! recovery record. The information in the recovery record
! should contain the transaction identifier, resource manager
! log identifier and transaction manager log identifier. This
! information is written into the transaction information
! record.
CH$MOVE (DTI$S_TID,
TID,
TRANS_INFO [DTI$T_TID]);
CH$MOVE (DTI$S_PART_LOG_ID,
PART_LOG_ID,
TRANS_INFO [DTI$T_PART_LOG_ID]);
CH$MOVE (RESOURCE_MANAGER_LENGTH,
.RESOURCE_MANAGER,
TRANS_INFO [DTI$T_PART_NAME]);
TRANS_INFO [DTI$B_PART_NAME_LEN] = RESOURCE_MANAGER_LENGTH;
! The search item list is initialized with a node
! name and transaction information record.
$ITMLST_INIT (ITMLST=SEARCH_LIST,
(ITMCOD=DTI$_SEARCH_AS_NODE,
BUFADR=.SEARCH_NODE_NAME,
BUFSIZ=SEARCH_NODE_NAME_LENGTH),
(ITMCOD=DTI$_SEARCH_RESOLVED_STATE,
BUFADR=TRANS_INFO,
BUFSIZ=DTI$S_TRANSACTION_INFORMATION));
! The item list is initialized to return a transaction
! information record containing the resolved state of the
! transaction.
! transaction.
$ITMLST_INIT (ITMLST=ITEM_LIST,
(ITMCOD=DTI$_TRANSACTION_INFORMATION,
BUFADR=TRANS_INFO,
BUFSIZ=DTI$S_TRANSACTION_INFORMATION));
! A $GETDTI is now performed to return the state of the
! transaction and the node name.
STATUS = $GETDTIW (EFN=10,
FLAGS=DDTM$M_FULL_STATE,
IOSB=IOSB,
ASTADR=AST_COMPLETION_ROUTINE,
ASTPRM=0,
CONTXT=SEARCH_CONTEXT,
LOG_ID=TM_LOG_ID,
SEARCH=SEARCH_LIST,
ITMLST=ITEM_LIST);
! If the transaction was committed then perform resource manager
! recovery and then delete the resource manager from the
! transaction.
IF .TRANS_INFO [DTI$B_STATE] EQLU DTI$K_COMMITTED THEN
STATUS = $SETDTIW (EFN=10,
FLAGS=0,
IOSB=IOSB,
ASTADR=AST_COMPLETION_ROUTINE,
ASTPRM=0,
CONTXT=SEARCH_CONTEXT,
FUNC=DTI$K_DELETE_RM_NAME,
ITMLST=ITEM_LIST);
RETURN .STATUS
END;
ROUTINE AST_COMPLETION_ROUTINE (ASTPRM : LONG UNSIGNED) : NOVALUE =
BEGIN
RETURN;
END;
END
ELUDOM
|
|